Prediction Models for Knee Osteoarthritis: Review of Current Models and Future Directions | ||
The Archives of Bone and Joint Surgery | ||
مقاله 1، دوره 11، شماره 1، فروردین 2023، صفحه 1-10 اصل مقاله (583.88 K) | ||
نوع مقاله: SYSTEMATIC REVIEW | ||
شناسه دیجیتال (DOI): 10.22038/abjs.2022.58485.2897 | ||
نویسندگان | ||
Taghi Ramazanian1؛ Sunyang Fu2؛ Sunghwan Sohn2؛ Michael J. Taunton3؛ Hilal Maradit Kremers* 1 | ||
11 Department of Health Sciences Research, Mayo Clinic, 200 First St SW Rochester, Rochester, Minnesota, USA 2 Department of Orthopedics, Mayo Clinic, 200 First St SW Rochester, Rochester, Minnesota, USA | ||
2Department of Health Sciences Research, Mayo Clinic, 200 First St SW Rochester, Rochester, Minnesota, USA | ||
3Department of Orthopedics, Mayo Clinic, 200 First St SW Rochester, Rochester, Minnesota, USA | ||
چکیده | ||
Background: Knee osteoarthritis (OA) is a prevalent joint disease. Clinical prediction models consider a wide range of risk factors for knee OA. This review aimed to evaluate published prediction models for knee OA and identify opportunities for future model development. Methods: We searched Scopus, PubMed, and Google Scholar using the terms knee osteoarthritis, prediction model, deep learning, and machine learning. All the identified articles were reviewed by one of the researchers and we recorded information on methodological characteristics and findings. We only included articles that were published after 2000 and reported a knee OA incidence or progression prediction model. Results: We identified 26 models of which 16 employed traditional regression-based models and 10 machine learning (ML) models. Four traditional and five ML models relied on data from the Osteoarthritis Initiative. There was significant variation in the number and type of risk factors. The median sample size for traditional and ML models was 780 and 295, respectively. The reported Area Under the Curve (AUC) ranged between 0.6 and 1.0. Regarding external validation, 6 of the 16 traditional models and only 1 of the 10 ML models validated their results in an external data set. Conclusion: Diverse use of knee OA risk factors, small, non-representative cohorts, and use of magnetic resonance imaging which is not a routine evaluation tool of knee OA in daily clinical practice are some of the main limitations of current knee OA prediction models. Level of evidence: III | ||
کلیدواژهها | ||
Artificial intelligence؛ Knee osteoarthritis؛ Machine learning؛ Prediction models | ||
مراجع | ||
1. Murray CJ, Atkinson C, Bhalla K, et al. The state of US health, 1990-2010: burden of diseases, injuries, and risk factors. Jama. 2013;310(6):591-608. doi: 10.1001/jama.2013.13805. 2. Vos T, Flaxman AD, Naghavi M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2163-96. doi: 10.1016/S0140- 6736(12)61729-2. 3. Lawrence RC, Felson DT, Helmick CG, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 2008;58(1):26-35. doi: 10.1002/art.23176. 4. Wallace IJ, Worthington S, Felson DT, et al. Knee osteoarthritis has doubled in prevalence since the mid-20th century. Proc Natl Acad Sci U S A. 2017;114(35):9332-6. doi: 10.1073/ pnas.1703856114. 5. Zhang W, Moskowitz R, Nuki G, et al. OARSI recommendations for the management of hip and knee osteoarthritis, part I: critical appraisal of existing treatment guidelines and systematic review of current research evidence. Osteoarthritis cartilage. 2007;15(9):981-1000. doi: 10.1016/j. joca.2007.06.014. 6. Zhang W, Nuki G, Moskowitz R, et al. OARSI recommendations for the management of hip and knee osteoarthritis: part III: Changes in evidence following systematic cumulative update of research published through January 2009. Osteoarthritis Cartilage. 2010;18(4):476-99. doi: 10.1016/j.joca.2010.01.013. 7. Zhang W, Robertson J, Jones A, Dieppe P, Doherty M. The placebo effect and its determinants in osteoarthritis: meta-analysis of randomised controlled trials. Ann Rheum Dis. 2008;67(12):1716-23. doi: 10.1136/ ard.2008.092015. 8. Losina E, Daigle ME, Suter L, et al. Disease-modifying drugs for knee osteoarthritis: can they be costeffective? Osteoarthritis Cartilage. 2013;21(5):655- 67. doi: 10.1016/j.joca.2013.01.016. 9. Bourne RB, Chesworth BM, Davis AM, Mahomed NN, Charron KD. Patient satisfaction after total knee arthroplasty: who is satisfied and who is not? Clin Orthop Relat Res. 2010;468(1):57-63. doi: 10.1007/ s11999-009-1119-9. 10.Hamel MB, Toth M, Legedza A, Rosen MP. Joint replacement surgery in elderly patients with severe osteoarthritis of the hip or knee: decision making, postoperative recovery, and clinical outcomes. Arch Intern Med. 2008;168(13):1430-40. doi: 10.1001/ archinte.168.13.1430. 11.Singh JA, Gabriel S, Lewallen D. The impact of gender, age, and preoperative pain severity on pain after TKA. Clin Orthop Relat Res. 2008;466(11):2717-23. doi: 10.1007/s11999-008-0399-9. 12.McAlindon TE, Bannuru RR, Sullivan M, et al. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthritis Cartilage. 2014;22(3):363-88. doi: 10.1016/j.joca.2014.01.003. 13.McWilliams D, Leeb B, Muthuri S, Doherty M, Zhang W. Occupational risk factors for osteoarthritis of the knee: a meta-analysis. Osteoarthritis Cartilage. 2011;19(7):829-39. doi: 10.1016/j.joca.2011.02.016. 14.Zhang W. Risk factors of knee osteoarthritis–excellent evidence but little has been done. Osteoarthritis Cartilage. 2010;18(1):1-2. doi: 10.1016/j.joca. 2009.07.013. 15.Blagojevic M, Jinks C, Jeffery A, Jordan K. Risk factors for onset of osteoarthritis of the knee in older adults: a systematic review and meta-analysis. Osteoarthritis Cartilage. 2010;18(1):24-33. doi: 10.1016/j.joca. 2009.08.010. 16.Jamshidi A, Pelletier JP, Martel-Pelletier J. Machinelearning-based patient-specific prediction models for knee osteoarthritis. Nat Rev Rheumatol. 2019;15(1):49- 60. doi: 10.1038/s41584-018-0130-5. 17.Zhang W, McWilliams DF, Ingham SL, et al. Nottingham knee osteoarthritis risk prediction models. Ann Rheum Dis. 2011;70(9):1599-604. doi: 10.1136/ ard.2011.149807. 18.Kerkhof HJ, Bierma-Zeinstra SM, Arden NK, et al. Prediction model for knee osteoarthritis incidence, including clinical, genetic and biochemical risk factors. Ann Rheum Dis. 2014;73(12):2116-21. doi: 10.1136/annrheumdis-2013-203620. 19.Riddle DL, Stratford PW, Perera RA. The incident tibiofemoral osteoarthritis with rapid progression phenotype: development and validation of a prognostic prediction rule. Osteoarthritis Cartilage. 2016;24(12):2100-7. doi: 10.1016/j. joca.2016.06.021. 20.Fernandes GS, Bhattacharya A, McWilliams DF, Ingham SL, Doherty M, Zhang W. Risk prediction model for knee pain in the Nottingham community: a Bayesian modelling approach. Arthritis Res Ther. 2017;19(1):59. doi: 10.1186/s13075-017-1272-6. 21.Garriga-Fuentes C, Sanchez-Santos MT, Arden N, et al. Predicting incident radiographic knee osteoarthritis in middle-aged women within four years: the importance of knee-level prognostic factors. Arthritis Care Res (Hoboken) . 2019;72(1). doi: 10.1002/ acr.23932. 22.Joseph GB, McCulloch CE, Nevitt MC, et al. Tool for osteoarthritis risk prediction (TOARP) over 8 years using baseline clinical data, X-ray, and MRI: Data from the osteoarthritis initiative. J Magn Reson Imaging. 2018;47(6):1517-26. doi: 10.1002/jmri.25892. 23.Kraus VB, Collins JE, Hargrove D, et al. Predictive validity of biochemical biomarkers in knee osteoarthritis: data from the FNIH OA Biomarkers Consortium. Ann Rheum Dis. 2017;76(1):186-95. doi: 10.1136/annrheumdis-2016-209252. 24.LaValley MP, Lo GH, Price LL, Driban JB, Eaton CB, McAlindon TE. Development of a clinical prediction algorithm for knee osteoarthritis structural progression in a cohort study: value of adding measurement of subchondral bone density. Arthritis Res Ther. 2017;19(1):1-9. doi: 10.1186/s13075-017- 1291-3. 25.Losina E, Klara K, Michl GL, Collins JE, Katz JN. Development and feasibility of a personalized, interactive risk calculator for knee osteoarthritis. BMC Musculoskelet Disord. 2015;16(1):1-12. doi: 10.1186/s12891-015-0771-3. 26.van Oudenaarde K, Jobke B, Oostveen AC, et al. Predictive value of MRI features for development of radiographic osteoarthritis in a cohort of participants with pre-radiographic knee osteoarthritis—the CHECK study. Rheumatology (Oxford). 2017; 56(1):113-120. doi: 10.1093/rheumatology/kew368. 27.Woloszynski T, Podsiadlo P, Stachowiak G, Kurzynski M, Lohmander L, Englund M. Prediction of progression of radiographic knee osteoarthritis using tibial trabecular bone texture. Arthritis Rheum. 2012;64(3):688-95. doi: 10.1002/art.33410. 28.Magnusson K, Turkiewicz A, Timpka S, Englund M. A Prediction Model for the 40-Year Risk of Knee Osteoarthritis in Adolescent Men. Arthritis Care Res (Hoboken). 2019;71(4):558-62. doi: 10.1002/ acr.23685. 29.Watt EW, Bui AA. Evaluation of a dynamic bayesian belief network to predict osteoarthritic knee pain using data from the osteoarthritis initiative. AMIA Annu Symp Proc. 2008:788-92. 30.Schett G, Kiechl S, Bonora E, et al. Vascular cell adhesion molecule 1 as a predictor of severe osteoarthritis of the hip and knee joints. Arthritis Rheum. 2009;60(8):2381-9. doi: 10.1002/art.24757. 31.Takahashi H, Nakajima M, Ozaki K, Tanaka T, Kamatani N, Ikegawa S. Prediction model for knee osteoarthritis based on genetic and clinical information. Arthritis Res Ther. 2010;12(5):R187. doi: 10.1186/ar3157. 32.Kinds MB, Marijnissen AC, Vincken KL, et al. Evaluation of separate quantitative radiographic features adds to the prediction of incident radiographic osteoarthritis in individuals with recent onset of knee pain: 5-year follow-up in the CHECK cohort. Osteoarthritis Cartilage. 2012;20(6):548-56. doi: 10.1016/j. joca.2012.02.009. 33.Yoo TK, Kim DW, Choi SB, Oh E, Park JS. Simple Scoring System and Artificial Neural Network for Knee Osteoarthritis Risk Prediction: A Cross-Sectional Study. PLoS One. 2016;11(2):e0148724. doi: 10.1371/ journal.pone.0148724. 34.Du Y, Almajalid R, Shan J, Zhang M. A novel method to predict knee osteoarthritis progression on MRI using machine learning methods. IEEE Trans Nanobioscience. 2018;17(3):228-36. doi: 10.1109/ TNB.2018.2840082. 35.Halilaj E, Le Y, Hicks JL, Hastie TJ, Delp SL. Modeling and predicting osteoarthritis progression: data from the osteoarthritis initiative. Osteoarthritis Cartilage. 2018;26(12):1643-50. doi: 10.1016/j. joca.2018.08.003. 36.Lim J, Kim J, Cheon S. A deep neural network-based method for early detection of osteoarthritis using statistical data. Int J Environ Res Public Health. 2019;16(7):1281. doi: 10.3390/ijerph16071281. 37.Sheng B, Huang L, Wang X, et al. Identification of Knee Osteoarthritis Based on Bayesian Network: Pilot Study. JMIR Med Inform. 2019;7(3):e13562. doi: 10.2196/13562. 38.Tiulpin A, Klein S, Bierma-Zeinstra SM, et al. Multimodal machine learning-based knee osteoarthritis progression prediction from plain radiographs and clinical data. Scie Rep. 2019;9(1):1-11. doi: 10.1038/s41598-019-56527-3. 39.Zhong H, Miller DJ, Urish KL. T2 map signal variation predicts symptomatic osteoarthritis progression: data from the Osteoarthritis Initiative. Skeletal Radiol. 2016;45(7):909-13. doi: 10.1007/s00256- 016-2360-4. 40.Lazzarini N, Runhaar J, Bay-Jensen AC, et al. A machine learning approach for the identification of new biomarkers for knee osteoarthritis development in overweight and obese women. Osteoarthritis Cartilage. 2017;25(12):2014-21. doi: 10.1016/j. joca.2017.09.001. 41.Ashinsky BG, Bouhrara M, Coletta CE, et al. Predicting early symptomatic osteoarthritis in the human knee using machine learning classification of magnetic resonance images from the osteoarthritis initiative. J Orthop Res. 2017;35(10):2243-50. doi: 10.1002/ jor.23519. 42.Long MJ, Papi E, Duffell LD, McGregor AH. Predicting knee osteoarthritis risk in injured populations. Clin Biomech (Bristol, Avon). 2017;47:87-95. doi: 10.1016/j.clinbiomech.2017.06.001. 43.Chen L. Overview of clinical prediction models. Ann Transl Med. 2020;8(4):71. doi: 10.21037/ atm.2019.11.121. 44.Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) The TRIPOD Statement. Circulation. 2015;131(2):211- 9. doi: 10.1161/CIRCULATIONAHA.114.014508. 45.Zhang L, Lin J, Liu B, Zhang Z, Yan X, Wei M. A review on deep learning applications in prognostics and health management. IEEE Access. 2019;7:162415-38. 46.Schmidhuber J. Deep learning in neural networks: An overview. Neural Netw. 2015;61:85-117. doi: 10.1016/j.neunet.2014.09.003. 47.Menashe L, Hirko K, Losina E, et al. The diagnostic performance of MRI in osteoarthritis: a systematic review and meta-analysis. Osteoarthritis Cartilage. 2012;20(1):13-21. doi: 10.1016/j.joca.2011.10.003. 48.Guermazi A, Niu J, Hayashi D, et al. Prevalence of abnormalities in knees detected by MRI in adults without knee osteoarthritis: population based observational study (Framingham Osteoarthritis Study). Bmj. 2012;345:e5339. doi: 10.1136/bmj. e5339. 49.Nevitt M, Felson D, Lester G. The Osteoarthritis Initiative: A knee health study. Protocol for the cohort study. 2006 Jun:10-3. 50.Shah ND, Steyerberg EW, Kent DM. Big data and predictive analytics: recalibrating expectations. Jama. 2018;320(1):27-8. doi: 10.1001/jama.2018.5602. 51.Hosner DW, Lemeshow S. Applied logistic regression. New York: Jhon Wiley & Son. 1989;581. 52.Ayer T, Chhatwal J, Alagoz O, Kahn Jr CE, Woods RW, Burnside ES. Comparison of logistic regression and artificial neural network models in breast cancer risk estimation. Radiographics. 2010;30(1):13-22. doi: 10.1148/rg.301095057. 53.Gravesteijn BY, Nieboer D, Ercole A, et al. Machine learning algorithms performed no better than regression models for prognostication in traumatic brain injury. J Clin Epidemiol. 2020;122:95-107. doi: 10.1016/j.jclinepi.2020.03.005. 54.Hayden JA, van der Windt DA, Cartwright JL, Côté P, Bombardier C. Assessing bias in studies of prognostic factors. Ann Intern Med. 2013;158(4):280-6. doi: 10.7326/0003-4819-158-4-201302190-00009. 55.Wolff RF, Moons KG, Riley RD, et al. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med. 2019;170(1):51-8. doi: 10.7326/M18-1376. 56.Bastick AN, Belo JN, Runhaar J, Bierma-Zeinstra SM. What are the prognostic factors for radiographic progression of knee osteoarthritis? A meta-analysis. Clin Orthop Relat Res.2015;473(9):2969-89. doi: 10.1007/s11999-015-4349-z. 57.Chapple CM, Nicholson H, Baxter GD, Abbott JH. Patient characteristics that predict progression of knee osteoarthritis: a systematic review of prognostic studies. Arthritis Care Res (Hoboken). 2011;63(8):1115-25. doi: 10.1002/acr.20492. 58.Luijken K, Groenwold RH, Van Calster B, Steyerberg EW, van Smeden M. Impact of predictor measurement heterogeneity across settings on the performance of prediction models: A measurement error perspective. Stat Med. 2019;38(18):3444-59. doi: 10.1002/ sim.8183. 59.Landsmeer ML, Runhaar J, van Middelkoop M, et al. Predicting knee pain and knee osteoarthritis among overweight women. J Am Board Fam Med. 2019;32(4):575-84. doi: 10.3122/jabfm. 2019.04. 180302. | ||
آمار تعداد مشاهده مقاله: 1,011 تعداد دریافت فایل اصل مقاله: 968 |