Various Dosages of BMP-2 for Management of Massive Bone Defect in Sprague Dawley Rat | ||
The Archives of Bone and Joint Surgery | ||
مقاله 5، دوره 7، شماره 6، بهمن 2019، صفحه 498-505 اصل مقاله (753.57 K) | ||
نوع مقاله: RESEARCH PAPER | ||
شناسه دیجیتال (DOI): 10.22038/abjs.2018.27916.1723 | ||
نویسندگان | ||
Achmad Kamal* ؛ Othdeh Samuel Halomoan Siahaan؛ Jessica Fiolin | ||
Department of Orthopaedic and Traumatology, Cipto Mangunkusumo National General Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia | ||
چکیده | ||
Background: BMP-2 has a crucial role in the treatment of extensive bone defect. However, data about the optimal dosage of BMP-2 in the massive bone defect casesis rare. Methods: Twenty-five SD rats were randomly allocated into a control group of hydroxyapatite (HA) alone (Group I), HA+BMP-2 1μg/mL (Group II), HA+BMP-2 5 ug/mL (Group III), HA+BMP-2 10 μg/mL (Group IV), and HA+BMP-2 20 ug/mL (Group V). Osteotomies were performed in each group with 10 mm bone defect in the right femur, followed by fixation and filling the defect. The fracture healing was evaluated by histomorphometry, and radiographs using RUST score. Results: We found there were significant differences in the mean total area of callus between the treatment groups (P<0.001); there were significant differences in the mean area of woven bone between group II, III, IV, and V with the control group (respectively P=0.009, P=0.016, P=0.009 and P=0.016), the area of the cartilage between the treatment groups and control group (respectively P=0.009, P=0.009, P=0.009 and P=0.028). A statistically significant difference was found in the average area of fibrosis between group II and control group, group IV and control group (respectively P=0.047 and P=0.009). RUST scores showed significant differences between the control group and group II, III, IV, V (respectively P=0.005, P=0.006, P=0.005 and P=0.006). Conclusion: The administration of BMP-2 stimulates the formation of bone bridging in a massive bone defect. The bone bridging filling massive bone defect depends on the dose or concentration of BMP-2. Administration of an optimal dose (10 μg/mL) of BMP-2 demonstrates better result than lower or higher dose for massive bone defect healing in SD rate. Level of evidence: II | ||
کلیدواژهها | ||
BMP-2؛ Fracture healing؛ Massive bone defect؛ Optimum dose | ||
مراجع | ||
1. Cheng A, Krishnan L, Tran L, Stevens HY, Xia B, Lee N,et al. The effects of age and dose on gene expression and segmental bone defect repair after BMP-2 delivery. JBMR Plus. 2018; 3(2):e10068. 2. Rivera JC, Strohbach CA, Wenke JC, Rathbone CR. Beyond osteogenesis: an in vitro comparison of the potentials of six bone morphogenetic proteins. Front Pharmacol. 2013; 4(1):125. 3. Peng KT, Hsieh MY, Lin CT, Chen CF, Lee MS, Huang Y, et al. Treatment of critically sized femoral defects with recombinant BMP-2 delivered by a modified mPEGPLGA biodegradable thermosensitive hydrogel. BMC Musculoskelet Disord. 2016; 17(1):286. 4. Ishida K, Haudenschild DR. Interaction between FGF21 and BMP-2 in osteogenesis. Biochem Biophys Res Commun. 2013; 432(4):677-82. 5. Blokhuis TJ, Calori GM, Schmidmaier G. Autograft versus BMPs for the treatment of non-unions:what is the evidence? Injury. 2013; 44(Supp 1):S40-2. 6. Schwabe P, Greiner S, Ganzert R, Eberhart J, Dähn K, Stemberger A, et al. Effect of a novel nonviral gene delivery of BMP-2 on bone healing. Sci World J. 2012; 2012(1):542-60. 7. Schwarz C, Wulsten D, Ellinghaus A, Lienau J, Willie BM, Duda GN. Mechanical load modulates the stimulatory effect of BMP-2 in a rat non union model.Tissue Eng Part A. 2013; 19(1-2):247-54. 8. Yilgor P, Yilmaz G, Onal MB, Solmaz I, Gundogdu S, Sousa RA, et al. An in vivo study on the effect of scaffold geometry and growth factor release on the healing of bone defect. J Tissue Eng Regen Med. 2013; 7(9):687-96. 9. Tressler MA, Richards JE, Sofianos D, Comrie FK, Kregor PJ, Obremskey WT. Bone morphogenetic protein-2 compared to autologous iliac crest bone graft in the treatment of long bone nonunion. Orthopedics. 2011; 34(12):e877-84. 10. Doi Y, Miyazaki M, Yoshiiwa T, Hara K, Kataoka M, Tsumura H. Manipulation of the anabolic and catabolic responses with BMP-2 and zoledronic acid in a rat femoral fracture model. Bone. 2011; 42(4):777-82. 11. Finkemeier CG. Bone-grafting and bone graft substitutes. J Bone Joint Surg. 2002; 84(3):454-64. 12. Brydone A, Meek D, Maclaine S. Bone grafting, orthopaedics biomaterials, and the clinical need for bone engineering. Proc Institut Mechan Eng J Eng Med. 2010; 224(12):1329-43. 13. Noldsletten L, Madsen JE. The effect of bone morphogenetic proteins in fracture healing. Scand J Surg. 2006; 95(2):91-4. 14. Whelan DB, Bhandari M, Stephen D, Kreder H, McKee MD, Zdero R, et al. Development of the radiographic union score for tibial fractures for the assessment of tibial fracture healing after intramedullary fixation. J Trauma. 2010; 68(3):629-32. 15. Mokbel N, Bou Serhal C, Matni G, Naaman N. Healing patterns of the critical size bony defect in rat following bone graft. Oral Maxillofac Surg. 2008; 12(2):73-8. 16. Laurencin CR, El-Amin SF. Xenotransplantation in orthopaedic surgery. J Am Acad Orthop Surg. 2008; 16(1):4-8. 17. Wutzl A, Rauner M, Seemann R, Milles W, Krepler P, Pietschmann P, et al. Bone morphogenetic protein 2,5 and 6 in combination stimulate osteoblasts but not osteoclasts in vitro. J Orthop Res. 2010; 28(11):1431-9. 18. Garrison KR, Donell S, Ryder J, Shemit I, Mugford M, Harvey I, et al. Clinical effectiveness and costeffectiveness of bone morphogenetic proteins in the non-healing of fractures and spinal fusion: a systematic review. Health Technol Assess. 2007; 11(30):1-150. 19. Gerstenfeld LC, Wronski TJ, Hollinger JO, Einhorn TA. Application of histomorphometric methods to the study of bone repair. J Bone Miner Res. 2005; 20(10):1715-22. 20. Vaccaro AR. The role of the osteoconductive scaffold in synthetic bone graft. Orthopedics. 2002; 25(5):S571-8. 21. Mont MA, Ragland PS, Biggins B, Friedlaender G, Patel T, Cook S, et al. Use of bone morphogenetic proteins for musculoskeletal applications. J Bone Joint Surg Am. 2004; 86-A(Suppl 2):41-55. 22. Lieberman JR, Daluiski A, Einhorn TA. The role of growth factors in the repair of bone. J Bone Joint Surg Am. 2002; 84(6):1032-44. 23. Mills LA, Simpson AH. In vivo models of bone repair. J Bone Joint Surg Br. 2012; 94(7):865-74. 24. Carreira AC, Zambuzzi WF, Rossi MC, Filho RA, Sogayar MC, Granjeiro JM. Bone morphogenetic proteins: promising molecules for bone healing, bioengineering, and regenerative medicine.Vitam Horm. 2015; 99(1):293-322. 25. Sasso RC, LeHuec JC, Shaffrey C. Iliac crest bone graft donor site pain after anterior lumbar interbody fusion: a prospective patient satisfaction outcome assessment. J Spinal Disord Tech. 2005; 18(Suppl):S77-81. 26. Cuomo AV, Virk M, Petrigliano F, Morgan EF, Lieberman JR. Mesenchymal stem cell concentration and bone repair: potential pitfalls from bench to bedside. J Bone Joint Surg Am. 2009; 91(5):1073-83. 27. Fauzi Kamal A, Hadisoebroto Dilogo I, Untung Hutagalung E, Iskandriati D, Susworo R, Chaerani Siregar N, et al. Transplantation of mesenchymal stem cells, recombinant human BMP-2 and their combination in accelerating the union after osteotomy and increasing, the mechanical strength of extracorporeally irradiated femoral autograft in rat models. Med J Islam Repub Iran. 2014; 28(1):129. 28. Mumcuoglu D, Fahmy-Garcia S, Ridwan Y, Nicke J, Farrell E, Kluijtmans SG, et al. Injectable BMP- 2 delivery system based on collagen-derived microspheres and alginate induced bone formation in a time- and dose-dependent manner. Eur Cell Mater. 2018; 35(1):242-54. 29. Tazaki J, Murata M, Akazawa T, Yamamoto M, Ito K, Arisue M, et al. BMP-2 release and dose-response studies in hydroxyapatite and beta-tricalcium phosphate. Biomed Mater Eng. 2009; 19(2-3):141-6. 30. Angle SR, Sena K, Sumner DR, Virkus WW, Virdi AS. Healing of rat femoral segmental defect with bone morphogenetic protein-2: a dose response study. J Musculoskelet Neuronal Interact. 2012; 12(1):28-37. 31. Boyce AS, Reveal G, Scheid DK, Kaehr DM, Maar D, Watts M, et al. Canine investigation of rhBMP-2, autogenous bone graft, and rhBMP-2 with autogenous bone graft for the healing of a large segmental tibial defect. J Orthop Trauma. 2009; 23(10):685-92. 32. Jones AL, Bucholz RW, Bosse MJ, Mirza SK, Lyon TR, Webb LX, et al. Recombinant human BMP-2 and allograft compared with autogenous bone graft for reconstruction of diaphysealtibial fractures with cortical defects: a randomized controlled trial. J Bone Joint Surg Am. 2006; 88(7):1431-41. 33. Sciadini MF, Johnson KD. Evaluation of recombinant human bone morphogenetic protein-2 as a bonegraft substitute in a canine segmental defect model. J Orthop Res. 2000; 18(2):289-302. 34. Nandi SK, Roy S, Mukherjee P, Kundu B, De DK, Basu D. Orthopaedic applications of bone graft & graft substitutes: a review. Indian J Med Res. 2010; 132(1):15-30. 35. Greenwald AS, Boden SD, Goldberg VM, Khan Y, Laurencin CT, Rosier RN, et al. Bone-graft substitutes: facts, fictions & applications. J Bone Joint Surg Am.2001; 83(2):98-103. 36. Moore WR, Graves SE, Bain GI. Synthetic bone graft substitutes. ANZ J Surg. 2001; 71(6):354-61. 37. Leboucher J. Design and characterization of a scaffold for bone tissue engineering. Nat Bio J. 2003; 12(1):1-46. 38. Jahangir AA, Nunley RM, Mehta S. Bone-graft substitutes in orthopaedics surgery. Orthop Surg. 1995; 90(1):111-9. | ||
آمار تعداد مشاهده مقاله: 479 تعداد دریافت فایل اصل مقاله: 421 |