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Abstract

Background: BMP-2 has a crucial role in the treatment of extensive bone defect. However, data about the optimal 
dosage of BMP-2 in the massive bone defect casesis rare.

Methods: Twenty-five SD rats were randomly allocated into a control group of hydroxyapatite (HA) alone (Group I), 
HA+BMP-2 1µg/mL (Group II), HA+BMP-2 5 ug/mL (Group III), HA+BMP-2 10 µg/mL (Group IV), and HA+BMP-2 20 
ug/mL (Group V). Osteotomies were performed in each group with 10 mm bone defect in the right femur, followed by 
fixation and filling the defect. The fracture healing was evaluated by histomorphometry,  and radiographs using RUST 
score.

Results: We found there were significant differences in the mean total area of callus between the treatment groups 
(P<0.001); there were significant differences in the mean area of woven bone between group II, III, IV, and V with the 
control group (respectively P=0.009, P=0.016, P=0.009 and P=0.016), the area of the cartilage between the treatment 
groups and control group (respectively P=0.009, P=0.009, P=0.009 and P=0.028). A statistically significant difference 
was found in the average area of fibrosis between group II and control group, group IV and control group (respectively 
P=0.047 and P=0.009). RUST scores showed significant differences between the control group and group II, III, IV, V 
(respectively P=0.005, P=0.006, P=0.005 and P=0.006).

Conclusion: The administration of BMP-2 stimulates the formation of bone bridging in a massive bone defect. The 
bone bridging filling massive bone defect depends on the dose or concentration of BMP-2. Administration of an optimal 
dose (10 µg/mL) of BMP-2 demonstrates better result than lower or higher dose for massive bone defect healing in SD 
rate.

Level of evidence: II
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Introduction

Management of massive bone defect has been a 
challenging problem for orthopedic surgeons 
(1, 2). Besides the complexity of treatment 

regiments, massive bone defect also has a significant 
morbidity onthe long run (2). Currently, there are 

various interventions available for orthopedic surgeons 
in managing massive bone defect, such as autograft, 
allograft, and transplantation with synthetic bone 
substitutes (3). Autograft remains the gold standard for 
managing massive bone defect, however graft substitutes 
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application of HA to fulfill the bone defect. Similar 
procedures were conducted in group II to group V with 
additional administration of 1 mL rhBMP-2 in each group 
with 1 ug/mL, 5 ug/mL,10 ug/mL, and 20 ug/mL dosage 
to HA for group II-V respectively at the bone defect site 
[Figure 1].

Surgical procedures 
The SD rats were anesthesized using an intraperitoneal 

injection of ketamine 80 mg/kg body weight and 
xylazine 10 mg/kg body weight. Through anterolateral 
approach, biceps femoris and vastus lateralis 
muscles were retracted from femoral bone, however 
the periosteum was maintained intact. Segmental 
osteotomy with its periosteum of 10 mm in length was 
performed using a manual saw at mid-diaphysis of the 
femur. Additionally, through the intercondylar femur, a 
retrograde intramedullary 1.4 mm Kirschner (K) wire 
was used to fixate the osteotomy site. Granules of HA 
were administered at the bone defect area. The fascia 
and skin were sutured. Paracetamol with dose of 50 
mg/kg/day for analgesic and ampicillin with dose of 
100 mg/kg/day for prophylactic antibiotic were given 
for three days.

Radiographic examination 
Radiographic examination was conducted with 

E7239X Rotanode Toshiba X-ray machine serial 
number 2A009, with a maximum exposure of 125 
kV and 500 mA. Moreover, the exposure of X-ray on 
ventrodorsal and laterolateral projection in this study 
was 52 kV and 6.4 mA for 400 ms. RUST score was used 
to perform radiological evaluation [Table 1]. Each score 
in the cortex (anterior, posterior, medial, lateral) was 
combined to a total score of 12 (fully healed) and 4 (not 
yet healed).

Histomorphometry 
In the period of six weeks, the rats were sacrificed 

and the right femur was obtained immediately.The 
harvested femur, with the K-wire still maintained, was 
fixed in 10% neutral buffered formalin for 48 hours. 
They were decalcified with Plank Rychlo’s solution 
(Wako Pure Chemical Industries Ltd., Osaka, Japan). 
These samples were embedded in paraffin and cut 
transversely with a microtome for 5 μm thickness section 
for six times with an interval of 300 nm before being 
stained with hematoxylin-eosin.They were examined 
with a Leica microsystems IC C50 HD microscope with 
amagnification of 40 x. 

The histological imageries were collected with a 
digital microscope camera and merged using the 
help of PTGUI Pro 9.1 software for digital evaluation. 
Histomorphometry evaluation included the evaluation 
of the total area of callus, the area of ossification, 
cartilage and fibrosis [Figure 2]. Determination of each 
area was conducted manually using Image J version 1.4 
software.

Statistical analysis
Statistical analysis was conducted using SPSS 21 with 

and/or delivery of osteoinductive proteins, for example 
bone morphogenetic protein (BMP) family, are other 
considerable alternatives with proven efficacy in bone 
regeneration (1, 3).

There have been reports concerning the disadvantages 
of allograft transplantation such as the risk of disease 
transmission, poor osteoinductivity, incomplete or 
delayed graft incorporation and potential for eliciting 
a deleterious immune response (3). In order to avoid 
these difficulties regarding autograft and allograft, 
several synthetic bone substitutes, for instance, 
calcium phosphate cement, hydroxyapatite (HA) 
and biodegradable polymers have been developed 
(4, 5). Furthermore, the above mentioned synthetic 
bone substitutes, deliver advantages in the aspect of 
availability, sterility and reduced morbidity at the graft 
site (3).

Special skills and novel techniques along with recent 
knowledge are necessary for creating an effective 
healing (2). Although new advances in technology have 
broadened the alternative treatment strategies, these 
recent advances have been dreary, complicated and 
sometimes non-feasible (4, 5).

In cases of critically sized (massive) bone defect where 
the osteoinductive and osteoconductive components 
have been lost, a good bone regeneration properties could 
not be achieved without the application of osteogenic 
and osteoinductive materials (5). There are three 
complementary elements in the process of bone healing 
and these are: osteoconductive matrix, osteoinductive 
signal and osteogenic cells when combined together 
with mechanical fixation could enhance a positive 
osteoinductive and adequate blood flow (6).

Example of an osteoinductive agent that could be 
rapidly absorbed is bone morphogenic protein-2 
(BMP-2) and demineralized bone matrix (DBM) (2,4).
The application of BMP-2 in a massive bone defect 
management plays a vital role in the proliferation, 
differentiation and inhibition of various cells acting 
in the microcellular environment and interacts with 
many regulatory factors (7-9). BMP-2 plays a role in 
the process of osteogenesis and chondrogenesis and 
inhibits osteoclastogenesis via the RANKL signaling 
(10). Several studies have suggested the increase of 
BMP-2 doses will accelerate the rate of bone healing up 
to an optimum dose which rate will go into plateau (4-
6). This study aims to evaluate the effect of differences 
in various BMP-2 doses on the healing of the fracture 
with massive bone defects.

Materials and Methods
This is an experimental study in white Spraque Dawley 

(SD) rats with post-test control group design. All 
procedures conducted in the study were permitted by 
the ethical commission in our institution. The SD rats 
were aged 3-4 months, weighed 250-350 grams, were 
of male gender, and had no physical disability. Twenty-
five SD rats were randomly allocated into five different 
groups. Group I (control group) went through segmental 
osteotomy of the femur which resulted in 10 mm bone 
defect, followed by internal fixation with K-wire and 
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Kruskal-Wallis or One Way ANOVA analysis. A P-value 
less than 0.05 implies that the differences between the 
means were statistically significant.

Results
In the radiographic evaluation of RUST score, Kruskal 

Wallis test revealed a significant difference among the 
groups with P-value of 0.001 [Table 2]. Mann Whitney 
test revealed a significant difference between group II 
andI, group III and I, group IV and I, and also group V 
and I  with a P-value of 0.005; 0.006; 0.005 and 0.006 
respectively.  Group IV had the highest mean RUST score 
11.6 while group I as a control had the lowest RUST score 
which was 4.4 [Figure 3].

By using the Image J software, we evaluated the area of 
total callus, ossification, cartilage and fibrosis [Table 3].  
Group IV (10 µg/mL) had the largest total area of callus 
57.8 mm2, the area of ossification 52.5 mm2 and area of 
cartilage 4.2 mm2 [Figure 4]. Meanwhile, group I had 
the smallest total area of callus, the area of ossification 
and area of cartilage which were 15.8 mm2, 6.7 mm2, and 
0.4 mm2 respectively. ANOVA test showed a significant 
difference in the total area of callus area with a P-value of 
0.001. The Bonferroni post hoc test revealed a significant 
difference between group II, III, IV ,V and I  with a P-value 
of 0.033; 0.001; 0.001; and 0.017 respectively. 

In the area of ossification, Kruskal Wallis test revealed 
a significant difference among all groups with 0.001 
P-value. Mann Whitney test revealed a significant 
difference between group II and I (control group), group 
III and I, group IV and I, and also group V and I  with a 

P-value of 0.009; 0.016; 0.009 and 0.016 respectively. 
Kruskal-Wallis test also indicated a significant difference 
(P=0.001) in the evaluation of the area of cartilage. Mann 
Whitney test revealed a significant difference between 
group II and I (control group), group III and I, group IV 
and I, and also group V and I  with a P-value of 0.009; 
0.009; 0.009 and 0.028 respectively. In contrast to the 
area of ossification and cartilage, group I  had the highest 

Figure 1.Surgical procedures. A) K-wire fixation after 10 mm osteotomy; B) HA and BMP-2 administration.

Tabel 1. Radiologic Criteria RUST Score

Score per cortex Callus Fracture line

1
2
3

No
Yes
Yes

Yes
Yes
No

Table 2. The radiographic evaluation RUST score of all groups

Group Mean ± SD Kruskal Wallis

RUST Score

I
II
III
IV
V

4.4 ± 0.9
8.2 ± 0.4
9.6 ± 0.9

11.6 ± 0.9
10.2 ± 1.3

P < 0.001

Figure 2. RUST score for each groups. Group IV had the highest 
mean RUST score (11.6) while group I as control had the lowest 
RUST score which was 4.4.

 B  A 
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Table 3. Histomorphometry of all groups evaluated using Image J

Groups
Total Callus Area Area of ossification  Area of cartilage Area of fibrosis 

Mean ± SD (mm2) P value Mean ± SD (mm2) P value Mean ± SD (mm2) P value Mean ± SD (mm2) P value

Control 15,8±4,3 0,241 6,7±3,9 0,003 0,4±0,2 0,517 8,7±4,6 0,255

1 µg 28,1±6,2 0,625 22,1±7,4 0,349 1±0,2 0,954 5±2,7 0,009

5 µg 36,3±4,9 0,165 28,6±5,9 0,741 1,8± 0,2 0,038 6±2 0,377

10 µg 57,8±7 0,559 52,5±5,8 0,689 4,2±1,4 0,938 1±0,9 0,298

20 µg 29,2±6,4 0,308 24,7±8 0,139 1±0,4 0,463 3,5±1,9 0,219

fibrosis area (8.7 mm2) while the lowest area of fibrosis 
was found ingroup IV (1 mm2). 

Discussion
The complicated physiological fracture healing process 

consists of three phases: the inflammatory phase, repair, 
and remodeling. It needs cooperation among some 
factors such as cells, growth factors, the interaction 
of extracellular matrix, differentiation factors, and 

cytokines. All of the above are controlled mainly by 
the expression of members of the TGF-β (transforming 
growth factor) super family, such as BMPs (10-16). 
BMP-2 has an important role affecting chondrogenesis, 
osteogenesis,and re-vascularization process. BMP-2 also 
affects the formation of fibrotic tissue minimally and 
accelerates the progression of maturation and callus 
remodeling (10).

BMP has the potency to induce mesenchymal stem 

Figure 3. Histomorphometry evaluation included the evaluation of the total area of callus, the areaof ossification, cartilage andfibrosis. A). 
Group I; B Group II; C) Group III;D) group IV and E).Group V.
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Figure 4. Histomorphometry evaluation of total area callus in all group. Group IV had the highest 
mean total callus area, 57.8 mm2.  While group I (control group) showed the lowest total callus 
are, 15.8 mm2.

cell (MSC) differentiation into osteoblast, maintaining 
its maturity and enhancing endochondral ossification 
which includes monocyte and MSC recruitment and 
proliferation, MSC differentiation into chondrocyte, 
chondrocyte hypertrophy, cartilage matrix calcification, 
vascular invasion with osteoblast differentiation and 
bone formation to eventually new bone remodeling and 
bone marrow creation (17-19). In the process of callus 
formation, BMP-2 plays a role in the initial process so 
that the provision of BMP-2 in this study are given in 
the early phase (20-24). In this study, administration of 
rhBMP-2 produces extensive callus thereby creating a 
bridge between proximal and distal osteotomy. Groups 
treated by rhBMP-2 had larger total callus, ossification, 
and cartilage, but a smaller area of fibrosis.

Sasso et al. mentioned that BMP has osteoinductive 
property in massive bone defect healing (25). A study 
conducted using animal concerning segmental bone 
defect resulted in the knowledge that BMP promoted a 
similar or better result compared to autologous bone 
graft (26).  Cuomo et al. reported that the inclusion of 
rhBMP-2 as an osteoinductive component generated 
more effective MSC differentiation by giving signal to 
the cells which produce complete healing rates (100%) 
(26). In addition, Kamal et al. reported that application 
of rhBMP-2 accelerated the healing process, averted 
implant failure and better bridging callus (27).

Dose or concentration of BMP-2 is an important aspect 
of bone formation. Moreover, in order to induce ectopic 
bone formation, dose of BMP-2 depends on the type of 
carrier material used (28). Tazaki et al. reported by using 

5 μg of BMP-2 with a 9 mm3 β-tricalcium phosphate 
scaffold, 32% bone formation is produced, whilst HA only 
yielded 3% bone formation in a rat ectopic model with 
equal amount of BMP-2 (29).

In this study, various rhBMP-2 dosages influenced 
the total area of callus, ossification and cartilage. The 
increasing doses of BMP-2 significantly increase the 
formation of callus, ​​bone (ossification) and cartilage. 
However, if it goes beyond the optimal dose (in this study 
10 ug/mL) it would eventually decrease in the formation 
of callus, ​​bone (ossification) and cartilage. In other words, 
the 20 ug/mL rhBMP-2 (group V) which actually resulted 
in counter-productive effects or biphasic dose dependant 
response (30).

Cheng et al. reported that, in comparison  of 10 mg 
BMP-2 dose, 1 mg dose samples qualitatively exhibited 
a higher local iNOS expression within the bone defect 
(1). This suggests that treating defects with 1 mg dose 
of BMP-2 presented a prolonged local inflammation, that 
resulted into poor healing in these samples.

Cheng et al. also reported that 1 mg BMP-2 dose samples 
qualitatively seemed to have higher local iNOS expression 
within the bone defect compared with the 10 mg dose 
samples (1). This indicates that the defects treated 
with 1 mg BMP-2 exhibited prolonged inflammation 
locally, which may have contributed to the poor healing 
observed in these samples. Overall, the degree of ectopic 
bone was much lower than that observed in a previous 
study, involving a higher dose of BMP-2. In addition, the 
low-dose BMP-2 samples demonstrated only few sparse 
islands of new bone formation surrounded by mostly 
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bridging filling massive bone defect depends on the 
dose or concentration of BMP-2. Administration of an 
optimal dose (10 µg/mL) of BMP-2 demonstrates better 
result than lower or higher dose for massive bone defect 
healing in SD rate.
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