http://psj.mums.ac.ir

Evaluation of Frequency and Properties of CT Angiographic Findings and their Influence on Management in Patients Suspicious to Traumatic Arterial Injuries Referred to CT Scan Department of Imamreza Hospital

Masoud Pezeshki Rad¹ (MD), Maryam Salehi¹ (MD), Hasan Ravari¹ (MD), Reihaneh Kazemi¹* (MD), Mehdi Darzi¹ (MD)

^{1.} Vascular and Endovascular Surgery Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.

ARTICLEINFO

ABSTRACT

Article type:	
Original Article	

Article history:

Received: 01- Dec-2015 Accepted: 22- Dec -2015

Keywords:

Computed tomography angiography Trauma Vascular injury **Introduction:** Peripheralvascular injuries include about 80% of allvascular injuries and the studies performed so farin this areashowed that the prevalence of vascular trauma is higher in menthanwomen. The aim of this study was to evaluate the frequency and types of traumatic arterial injuries in patients referred to Computed Tomography (CT) department of Imam Reza Hospital.

Materials and Methods: This cross sectional study was approved by the ethics committee of Mashhad University of Medical Sciences. Patients' information were recorded in a checklist, all patients who were referred to CT of Hospitalfor scan department Imam Reza Computed Tomography angiography (CTA) because of traumatic vascular injuries were enrolled the study. Data were recorded aboutpatients' demographic characteristics (age and sex), mechanism of traumasuch ad accident (motorcyclist, pedestrian, car-rider), assaults, falls and so on, clinical symptoms at admission, type of arterial injury, and the report of CTA and the existence ofmusculoskeletal or neurologic comorbities. Patients' management details were also evaluated. Data were coded and analyzed by SPSS Version 16.

Results: 200 patients were evaluated in this study. The most common sites of involvement were the lower limbs (76%), thorax (16%), and upper limbs (8%). The most common abnormal angiographic pattern was run-off/ cut-off (52%), hematoma (15%), and aneurysm (5.5%). There was also nerve damage in 19% of patients. Surgical management was performed and included, end to end anastomosis in 32% of patients, thrombectomy in 23%, amputation in 18%, and ligation in 4% and vascular graft in 7%.

Conclusion: In ourstudy, there wasvascular injury in63.5% of patients based on the results of CTA. All vascular injuries were diagnosed by CTA were confirmed after vascular intervention and no serious vascular injury was reported in patients with negative CTA result at the follow-up period. So, CTA is a noninvasive and accurate diagnostic test.

▶ Please cite this paper as:

Pezeshki Rad M, Salehi M, Ravari H, Kazemi R, Darzi M, et al. Evaluation of Frequency and Properties of CT Angiographic Findings and their Influence on Management in Patients Suspicious to Traumatic Arterial Injuries Referred to CT Scan Department of Imamreza Hospital. Patient Saf Qual Improv. 2016; 4(4):450-454.

Introduction

Arterial injuries with increasing frequency is known as an important complication of trauma. Such complications may lead to multiple pathologic lesions, and cause involvement of visceral and peripheral arteries. The peripheral arteries are especially susceptible to injuredby blunt trauma. Because they are closer to the surface and due to theirproximity to the bone, brachial and femoral arteries are more susceptible. Clinical prognosis depends on early diagnosis and repair of the injury (1, 2). The physical examination has a major role in the evaluation and treatment of patients with arterial damage. Evaluation and follow-up of this type of damages have been changed in the last decades from routine surgical exploration to selective arteriography and recently to selective evaluation based on physical examination (2, 3). Several imaging modalities have been proposed for evaluation of vascular lesions including Catheter

^{© 2014} mums.ac.ir All rights reserved.

^{*}Corresponding Author: Reihaneh Kazemi, Vascular and Endovascular Surgery Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. Email: <u>PezeshkiradM@mums.ac.ir</u>

Angiography (CA), duplex ultra-sonography (DUS), magnetic resonance angiography (MRA) and Computed Tomography Angiography (CTA) (4-7).

Although the gold standard for the diagnosis of traumatic vascular injuries is conventional angiography through catheter by Digital Subtraction Angiography (DSA) technique (8-11), but this modality becomes useless in vascular injuries in limbs by developing new noninvasive techniques (12-16).

Today, CTA has become an important method for initial evaluation of patients with trauma and is increasingly used for diagnosis of damages caused by blunt and penetrating trauma in the neck and limbs (17-23) and is considered as a choice method in these cases (24).

Patients with clinical symptoms suggestive for arterial injury such as hematoma, significant bleeding, trillorlimb

ischemiashouldimmediatelyundergosurgicalexploration . Among these, there is agroup of patientswhomight benefitfromvascularradiologystudies. This group includes the patientswith clear signs ofarterial damage, severebonefracture, massivedamage of soft tissue,woundsfrombullets andgunhunting, as well as thepatients whodon't have clearsigns ofarterial damage, but have shown the symptoms of involvement in follow up(25).

In this research project, the frequency and types of arterial injuries following trauma in patients referred to the department of CT scan in Imam Reza hospital was studied. The study location was the Computed Tomography (CT) department of in Imam Reza hospital which is the main referral center for evaluating traumatic patients with CTA in Mashhad.

Materials and Methods

This cross-sectional studywas performed on patientssuspected to arterial injury who were referred to the department of CT scan in Imam Reza Hospital.

Patients' selection

Sample size was estimated about200 patients. Patientswho weresuspected a arterial injury and were referred toImam Reza Hospital for CTA and were enrolled the study. The patients were excluded from the study if they could not undergoCTA(sensitivity to Contrast agent, etc.).

Methods

After approval by the ethics committee of Mashhad University of Medical Sciences, the checklist of the variables related to the research project was designed. Information on those who were referred to CTA department wasrecorded.

The information included: the characteristics of birth certificate (name and surname, age, sex), mechanism of traumalike accident (motorcyclist, pedestrian, carrider), assaults, falls and so on, clinical symptoms of traumatic patient at admission, type of arterial injury and the CTA report, comorbidities were also recorded.Type of treatment procedures related to vascular injury was determined.

Statistical analysis

Datawerecodedand entered intoSPSS software Version₁₆. Data was described usingfrequency tables and quantitative datawere compared byt-student testand datacorrelation by qualitative datawas performed through Chi-square test. P<0.05 was considered as significant level.

Results

200 patientswere evaluated in this study. 188 patients (94%) were male and 12 (6%) female. The most commonsites of involvementwere the lower limbs(76%), thorax(16%), and upper limbs(8%). The damage was caused by trauma and accident in 84.5% of patients and by conflictin 15.5% of them.

The most commonagegroupswere 16to 30 years(46.5%), 31 to45 years(20%), <15 years (12.5%), >60 years(11%), and 46to 60 years(10%).There wasfracture in66% of patients and34% of damageswere without fracture. 12.5% of patients (n = 25) died. Figure 1: Shows the frequency of abnormal CT angiographies.

Figure1: The frequency of abnormal CTA

Based on the results of angiography, there was vascular injury in63.5% of patients. The most common abnormalpatternofangiographywas run-off (36%), cut-off (16%), hematoma(15%), and aneurysm(5.5%). There was also nerved a mage in 19% of patients. End to endanastomosiswas performedin patients. 32% thrombectomy of in23%. amputationin18%, ligation in 4%, and vascular graft in7%. Supportive treatments alone or inaddition toother therapieswere used for 47% of patients.

There was vascular injury in 67.8% of patientsbased onthe results of Doppler ultrasound.Table1 showed various factors relationship with arterial damage.

		Arteri		
		Negative	Positive	P value
Anatomic site	Lower limb	39 (89)	113 (54.3)	
	Thorax	32 (43.8)	0	< 0.001
	Upper limb	2 (2.7)	14 (11)	
Age groups	<15	7 (9.6)	18 (14.2)	
	15 to 30	43 (58.9)	50 (39.4)	
	31 to 45	11 (15.1)	29 (22.8)	0.003
	45 to 60	1 (1.4)	19 (15)	
	>60	11 (15.1)	11 (8.7)	
Fracture	Positive	49 (67.1)	84 (66.1)	0 877
	Negative	24 (32.9)	43 (33.9)	0.877
Mechanism	Accident	63 (86.3)	106 (83.5)	0.594
of trauma	Conflict	10 (13.7)	21(16.5)	
Nerve	Positive	1 (1.4)	36 (28.3)	< 0.001
injury	Negative	72 (98.6)	91 (71.7)	
Mortality	Positive	6 (8.2)	16 (12.6)	0.241
	Negative	67 (91.8)	111 (87.4)	0.541
supportive	Positive	53 (72.6)	40 (31.5)	<0.001
treatment	Negative	20 (27.4)	87 (68.5)	<0.001

Table1: Various factors relationship with arterial damage

Discussion

Peripheral vascular injury includes about 80% of all vascular injuries and the studies performed so far in this area show that the prevalence of vascular trauma is higher in men than women (90%) and the incidence ratio of men to women is 1/5 to 1/7. The middle-aged people are the victims of these events more than other age groups (20-40 yrs) (2, 7, 19, 22, 26, and 27).

In a previousstudyshowed that lower limbs are at more risk for developing vascular injuries followingtraumathan the upper limbs (58 vs.81%) (3). In our study also,the most commonsites werethe lower limbs(76%), thorax(16%)and upper limbs(8%), respectively.

In the present study, accidentwas the cause of 84.5% traumas and damage from conflict occur in15.5% of cases. In general population, vascular injuries inlimbs are with bothblunt associated The incidence of these andpenetratingtrauma(28). complications varies n different areas, depending on the incidence oftrauma. In some studies, penetrating traumaincludes45% of cases, and inotherstudiesincludes70% to90% of vascular injuries(29, 30).

However, it seems that the major mechanism in the cases waspenetrating trauma like gunshot, and themore common mechanism in the cases with blunt traumais motorcycle accident (31). In the study of Safaee, the most cases included knife or sharp penetrating trauma (63%) and blunt trauma accounted in 21% of cases. There was both penetrating and blunt traumain 16% of cases (32).

In this study, there was fracture in66% of patients and34% of damages were without fracture. 12.5% of patients (n = 25) died. In the study of Nemati,86.7% of vascular injuries occurred along with fracture(33). In the study of Qadusi, there was bone fracture in9.5% of cases with trauma (33). In general population, association of vascular injuries withbonefracturemayvaryregard totraumamechanisms.

In Haghi study, 42% of patients had simultaneous comorbities and the most common affected system was central nervous system (CNS)(34). In our study, the frequency of arterial injury confirmed in CTA was not significantly different inpatients with comorbities.

In our study,end to endanastomosiswas performedin32% ofpatients, other interventions were thrombectomy (23%), amputation(18%), arterial ligation (4%), andvascular graft(7%). Supportive treatments alone or in addition to other therapies were used in 47% of patients.

In Mahmoudi study, simple vascular repair and end to end anastomosis was performed in partial and incomplete vascular injuries. Ligation was the choice option in injuries involved organswith two supplying arteries such as the radial and ulnar arteries. In this study, no cases of artificial graft were used. Vein grafts were performed in blunt and gunshot trauma (35).

In a study, typesofvascular injuries were reported as38.5% pseudoaneurysmand24.5% arterial obstruction with or withoutarteriovenous fistula (AVF)(35) .Perryandcolleagues had found 16cases of pseudo AVF aneurysm and 4 cases of in31 patientsdiagnosedwithvascularinjuries after trauma(36). In the studyof Yilmaz, 52.5% pseudo aneurysm and12.5% arterial occlusion and35% AVFhave been reported (32). In a study in Egypt, 52.6% pseudo aneurysm, 26.3% artery stenosis, and 10.5% total occlusionandAVFhad been occurred (33). In our study, aneurysmswere observed in 5.5% of traumatic patientsthatcouldresult fromdifferences in theinjuredvesselandtraumamechanism.

InZafarghandi study, there was simultaneous lesionarterial trauma in 56% ofcases. 33% of patientshadprimarynerve damage(37). In our studyalso, 19% of patients hadnerveinjuries other than vascular injury. It seems that the prevalence of neurologic comorbidities can varybecause of themechanismand site of trauma.

In our study, there were vascular injuries were reported in 63.5% of patients inCTA.The results of Doppler ultrasound showed vascular involvement in 67.8% of patients. All vascular injuries in CTA were confirmed after vascular interventions and none of patients with negative CTA had experienced serious sign and symptoms of vascular injury in follow up period (at least 6 months).

In our study, 12.5% of patients (n = 25) died. In the study of Mahmoudi, the morbidity rate was 4.5% and mortality 8.6%, the cause of mortality might be the extension of vascular lesion which caused massive bleeding and other comorbities(38). In a study, type of blunt trauma, comorbities, delayed capillary filling, the distal pulse status before and after surgery, surgery duration and duration of hospital stay, were influenced morbidity and morbidity. The early diagnosis of

vascular injury, early rehabilitation and patient's transfer to the vascular center and providing appropriate care for complicated cases can effectively reduce morbidity (39).

In a study, vascular injury due to prolonged ischemia, despite appropriate treatment led to amputation in 30% of cases (40). In another study, amputation was performed in 8.3% of traumatic patients (38). In our study, amputation was limbwas performed in 18% of patients with vascular injury. The co-existence of neurologicdeficitmight be another probable cause for amputation. Moreover, this study was conducted in a referral center, so, the rate of complicated cases was higher. Also, some studies have shown that the incidence of nerve injurycan predict becoming handicap and the need for amputation in patients with vascular injuries (38). Streptococci infections are another common cause for limb amputation in traumatic patients (39).

Overall, CTA has numerous advantages in the diagnosis of vascular trauma. Regardless of non-invasive method, it has the ability to completely image the arterial tree in shorted time duration (which might

References

- 1- Collins HA, Jacobs KA. Acute Arterial Injuries Due to Blunt Trauma. J Bone Joint Surg Am. 1961; 43:193-197.
- 2- Busquéts AR, Acosta JA, Colón E, Alejandro KA,Rodríguez P. Helical Computed Tomographic Angiography for the Diagnosis of Traumatic ArterialInjuries of theExtremities. J Trauma. 2004; 56:625–628.
- 3- Sirinek KR, Levine BR, Gaskill HV, Root HD. Reassessment of the role of routine operative exploration in vascular trauma. J Trauma. 1981; 21:339-344.
- 4- AbuRahma AF, Robinson PA, Umstot RK.Complications of arteriography in a recent series of 707 cases: factors affecting outcome. Ann Vasc Surg. 1993; 7: 122–129.
- 5- Scalfani SJ, Cooper R, Shaftan GW. Arterial trauma:diagnostic and therapeutic angiography. Radiology. 1986; 3 (4):165–172.
- 6- Foster BR, Anderson SW, Soto JA. CT angiography of extremity trauma. Tech VascIntervRadiol. 2006; 9:156–166.
- 7- Fishman EK, Horton KM, Johnson PT. Multidetector CT and three-dimensional CT angiography for suspected vascular trauma of the extremities.Radiographics. 2008; 28:653–667.
- 8- Howard CA, Thal ER, Redman HC, Gibson P. Intraarterial digital subtraction angiography in the evaluation of peripheral vascular trauma. Ann Surg 1989; 210:108-111.
- 9- Rose SC, Moore EE. Angiography in patients' witharterial trauma: correlation between angiographic abnormalities, operative findings, and clinical outcome. AJR 1987; 149:613-619.

be important in traumatic patients) and also diagnosis of associated deformities caused by trauma to the surrounding muscles and bone (20-23). In addition, other benefits compared to CA can be pointed to no need for arterial cannulation, thus avoid all the complications of arterial puncture, and there is no need to the presence of the surgery team and interventional radiologist who are required for CA. The sensitivity and specificity of CTA in the diagnosis of suspected vascular injuries is reported ranging from 95 to 100% for sensitivity and 90 to 100% for specificity (7, 28, 31, and 33).

Conclusion

In ourstudy, there wasvascular injury in63.5% of patients based on the results of CTA. All vascular injuries were diagnosed by CTA were confirmed after vascular intervention and no serious vascular injury was reported in patients with negative CTA result at the follow-up period. So, CTA is a noninvasive and accurate diagnostic test.

- 10- Goodman PC, Jeffrey RB Jr, Brant-Zawadzki M. Digital subtraction angiography in extremity trauma. Radiology 1984; 153:61-64.
- 11- Keen JD, Dunne PM, Keen RR, Langer BG. Proximity arteriography: cost-effectiveness in asymptomatic penetrating extremity trauma. J VascIntervRadiol 2001; 12:813-821.
- 12- Abou-Sayed H, Berger DL. Blunt lower-extremity trauma and popliteal artery injuries: revisiting the case for selective arteriography. Arch Surg 2002; 137:585-589.
- 13- Conrad MF, Patton JH Jr, Parikshak M, Kralovich KA. Evaluation of vascular injury in penetrating extremity trauma: angiographers stay home. Am Surg 2002; 68:269-274.
- 14- Fry WR, Smith RS, Sayers DV. The success of duplex ultrasonographic scanning in diagnosis of extremity vascular proximity trauma. Arch Surg 1993; 128:1368-1372.
- 15- Schwartz MR, Weaver FA, Bauer M, Siegel A, Yellin AE. Refining the indications for arteriography in penetrating extremity trauma: a prospective analysis. J VascSurg 1993; 17:116-122.
- 16- Anderson RJ, Hobson RW, Lee BC. Reduced dependency on arteriography for penetrating extremity trauma: influence of wound location and noninvasive vascular studies. J Trauma 1990; 30:1059-1063.
- 17- LeBlang SD, Nuñez DB, Rivas LA. Helical computed tomographic angiography in penetrating neck trauma. EmergRadiol. 1997;4:200-206.
- 18- LeBlang SD, Nuñez DB Jr. Helical CT of cervical spine and soft tissue injuries of the neck. RadiolClin North Am. 1999;37:515-532, v-vi.

- 19- Soto JA, Múnera F, Cardoso N. Diagnostic performance of helical CT angiography in trauma to large arteries of the extremities. J ComputAssist Tomogr. 1999;23:188-196.
- 20- Múnera F, Soto JA, Palacio D. Diagnosis of arterial injuries caused by penetrating trauma to the neck: Comparison of helical CT angiography and conventionalngiography. Radiology. 2000; 216:356-362.
- 21- Gracias VH, Reilly PM, Philpott J. Computed tomography in the evaluation of penetrating neck trauma: A preliminary study. Arch Surg. 2001; 136: 1231-1235.
- 22- Soto JA, Múnera F, Morales C. Focal arterial injuries of the proximal extremities: Helical CT arteriography as the initial method of diagnosis. Radiology. 2001;218:188-194.
- 23- Múnera F, Soto JA, Palacio D. Penetrating neck injuries: Helical CT angiography for initial evaluation. Radiology. 2002; 224:366-372.
- 24- Hoan AR, Lineen EB, Perez EA, Neville HL, Thompson WR, Sola JE. Value of computed tomographic angiography in neck and extremity pediatric vascular trauma. J Pediatr Surg. 2009; 44(6):1236–1241.
- 25- Dennis JW, Frykberg ER, Veldenz HC, Huffman S, Menawat SS. Validation of nonoperative management of occult vascular injuries and accuracy of physical examination alone in penetrating extremity trauma: 5to 10-year follow-up. J trauma. 1998; 44:243–253.
- 26- Rieger M, Mallouhi A, Tauscher T, Lutz M, Jaschke WA. Traumatic Arterial Injuries of the Extremities: Initial Evaluation with MDCT Angiography. AJR 2006; 186:656–664.
- 27- Yan H, Maximus S, Koopmann M, Keeley J, Smith B, Virgilio Cd et al. Vascular Trauma Operative Experience is Inadequate in General Surgery Programs. Ann Vasc Surg. 2016 May;33:94-7. doi: 10.1016/j.avsg.2016.02.005. Epub 2016 Mar 8.
- 28- Múnera F. Multislice CT for vascular injuries. ApplRadiol. 2006; 35(9):38–43.

- 29- White JM, Stannard A, Burkhardt GE ,Eastridge BJ, Blackbourne LH, Rasmussen TE. The epidemiology of vascular injury in the wars in Iraq and Afghanistan. Ann Surg. 2011; 253(6): 1184–1189.
- 30- Dueck AD, Kuceyw DS. The management of vascular injuries in extremity trauma. CurrOrthop. 2003;17: 287–291.
- 31- Inaba K, Potzman J, Munera F, et al. Multi-slice CTangiography for arterial evaluation in the injured lower extremity. J Trauma. 2006; 60(3):502-506.
- 32- Yilmaz AT, Arslan M, Demirkiliç U, Ozal E, Kuralay E, Tatar H, et al. Missed arterial injuries in military patients. Am J Surg. 1997;173(2):110–114.
- 33- Zaiton F, Ahmed AF,Samir AM. Value of multislice computed tomography angiography (MCTA) in neglected post traumatic vascular injuries of the extremities. The Egyptian Journal of Radiology and Nuclear Medicine. 2013; 44(3): 539-546.
- 34- Perry OM. Complications of missed arterial injuries. J Vasc Surg.1993; 17:399–407.
- 35- Anderson RJ, Hobson RW III, Padberg FT Jr. Penetrating extremity trauma: identification of patients at high-risk requiring arteriography. J Vasc Surg. 1990; 11(4):544-548.
- 36- Snyder WH III, Thal ER, Bridges RA, et al. The validity of normal arteriography in penetrating trauma. Arch Surg. 1978; 113(4):424-426.
- 37- Hessel SJ, Adams DF, Abrams HL. Complications of angiography. Radiology. 1981; 138(2):273-281
- 38- Bhatt NR, McMonagle M. Penetrating neck injury from a screwdriver: can the No Zone approach be applied to Zone I injuries? BMJ Case Rep. 2015 Nov 27;2015. pii: bcr2015212666.
- 39- Barzi DM, Sami SH, Fallah E. Pseudo-aneurysm of anterior tibia artery simulating a soft tissue sarcoma: a case report. Acta Med Iran. 2014;52(3):234-7.
- 40- Nemati M, Nosratinia H, Asefi S. Angiographic findings of Arterial injuries in extremity Trauma. Horizon Med Sci . 2009; 15 (1) :15-19.