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Abstract 

 
Objective(s) 

The brief interruption of cerebral blood flow causes permanent brain damage and behavioral dysfunction. 

The hippocampus is highly vulnerable to ischemic insults, particularly the CA1 pyramidal cell layer. There is 

no effective pharmacological strategy for improving brain tissue damage induced by cerebral ischemia. 

Previous studies reported that pentoxifylline (PTX) has a neuroprotective effect on brain trauma. The 

possible neuroprotector effects of PTX on behavioral deficit were studied in male Wistar rats subjected to a 

model of transient global brain ischemia.  

Materials and Methods 

Animals (n= 32) were assigned to control, sham-operated, vehicle, and PTX- treated (200 mg/kg IP) groups. 

PTX administered at 1hr before and 3 hr after ischemia. Global cerebral ischemia was induced by bilateral 

common carotid artery occlusion, followed by reperfusion.  

Results 

Morris Water maze testing revealed that PTX administration in cerebral ischemia significantly improved 

hippocampal-dependent memory and cognitive spatial abilities after reperfusion as compared to sham-

operated and vehicle-treated animals. After the behavioral test, the rats were sacrificed and brain sections 

were stained with Nissl staining. There were no significant differences between number of pyramidal cells in 

both control and PTX groups. 

Conclusion 

Our study demonstrated that pentoxifylline had a protective effect on rats with transient global ischemia and 

could reduce cognitive impairment. 
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Introduction 
Stroke is a major cause of death in the developed 

countries (1- 3). Stroke causes immense human 

suffering leaving the patient usually grossly 

disabled.  Therefore, it is viewed as a leading 

cause for the loss of quality-adjusted life-years 

(4). Stroke has been considered as untreatable 

and even today there is no effective drug therapy 

to help stroke patients.  

The ischemia models have enabled the 

effective study of pathological mechanisms of 

stroke and within the last decades the complex 

molecular mechanisms leading to cell death 

following cerebral ischemia have been partly 

elucidated (5-8). This has lead to attempts to 

find ways to interfere with these mechanisms.  

The attempts to help stroke patients have 

predominantly been concentrated on 

prevention of acute cell death. It has been 

shown that oxidative stress has an important 

role in the pathophysiology of stroke and brain 

ischemia–reperfusion can produce the 

excessive amount of both ROS and/or RNS 

Which can lead to cellular damage and 

promote cell death (9). The hippocampus is 

most vulnerable to the neurodegenerative 

effects of ischemia in humans (10-12) and 

animals (13, 14). Behavioral and cognitive 

disturbances, particularly within the learning 

and memory domains, are the most visible 

symptoms of cerebral Ischemia.  

Indeed, more than one hundred agents have 

been proved to be neuroprotective in 

experimental models (15). Unfortunately, 

despite these promising prospects in the 

prevention of neurodegeneration and cell 

death, the drugs that have been evaluated 

clinically have failed, usually because of an 

unsuitable time-window, lack of efficacy or 

the presence of unwanted side effects (16, 17). 

Pentoxifylline (PTX) is a methylxanthine 

derivative and a nonspecific type 4 

phosphodiesterase inhibitor, clinically used in 

the treatment of lower extremity claudication. 

The mechanisms underlying its beneficial 

effects seem to be related to alterations in 

cellular functions and to the improvement of 

microcirculatory perfusion in both peripheral 

and cerebral vascular beds (18, 19). PTX is 

termed a hemorrheologic modifier for its 

effects decreasing the deformability of red 

blood cells. In vitro as well as in vivo 

experiments indicated an additional 

therapeutic potential for PTX as an anti-

inflammatory and immunomodulator (20-22). 

The PTX anti-inflammatory properties 

include the inhibition of TNF-alpha production 

(23) that seems to be due to reduced TNF 

protein levels by the inhibition of TNF mRNA 

transcription (24). TNF-alpha is expressed in 

the ischemic brain (25), and is known to 

rapidly upregulate in the brain after injury 

(26). This last study demonstrated that the 

exogenous TNF-alpha exacerbates focal 

ischemic injury, and the blockade of the 

endogenous TNF-alpha is neuroprotective. 

Furthermore, TNFalpha inhibition may 

represent a novel pharmacological strategy for 

the treatment of ischemic stroke.  

Previous studies reported that PTX has a 

neuroprotective effect in experimental models of 

global as well as focal cerebral ischemia. Thus, 

PTX treatment has been shown to improve 

recovery of the cerebral electrical function in 

dogs, after transient cerebral global ischemia, by 

a mechanism that does not involve improvement 

of cerebral blood flow or global oxygen 

consumption (27). Furthermore, the pretreatment 

with PTX decreased the incidence and severity 

of hypoxic-ischemic injury in immature rat 

brain, by attenuating the expression of IL-1beta 

and TNF-alpha genes (28). PTX also afforded 

neuroprotection in a rat model of cerebral 

ischemia, such as occlusion of the ipsilateral 

common carotid and middle cerebral arteries 

(29). The objectives of the present work were to 

investigate the possible neuroprotective effects 

of pentoxifylline on a model of global transient 

ischemia, by evaluating the animal's locomotor 

activity and cognitive functions (acquisition and 

learning processes, and spatial memory). 

 

Materials and Methods 
Animals & chemicals 

Adult male Wistar rats 12-13-weeks-old 

weighing (250-300 g) from Pharmacology 

Department of Tehran University of Medical 

Sciences were used in all experiments. The 

http://www.ncbi.nlm.nih.gov/pubmed/14580316
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rats were housed under a 12 hr. Light/dark 

cycle. Animals were allowed free access to 

food and water. All of them were housed in 

animal house for at least 5 days prior to 

experiments.  

All procedures used in the study were 

approved by the ethics committee for the use 

of experimental animals at Tehran University 

of Medical Sciences. 

All chemicals were purchased from Sigma 

except PTX powder that was gifted kindly by 

the Amin Pharmaceutical Co (Esfehan-Iran). 

 
Experimental groups and drugs 

Animals (n=32) were divided randomly into 4 

groups as described below:  

1- Control group: rats  only anesthetized by 

pentobarbital sodium (40 mg / kg)  

2- Ischemia group: After anesthesia by 

Pentobarbital sodium, common carotid arteries 

on both sides occluded for 20 min followed by 

reperfusion. 

3- Experimental Group: After anesthesia and 

ischemia for 20 min followed by reperfusion , 

200 mg/kg  PTX was injected intraperitoneally 

(IP) at the beginning of reperfusion phase.    

4- Vehicle Group: After anesthesia and 

ischemia for 20 min followed by reperfusion, 

0.5 ml  was injected (IP) at the beginning of 

reperfusion phase.  

Animals were  sacrified after 4 days. All 

hippocampi were removed for histological  

assessment (Nissl  method). 

 

Surgical procedure 

To induce transient cerebral ischemia, rats were 

anesthetised with sodium pentobarbital 

anesthesia (40 mg/kg, IP). A rectal temperature 

probe was inserted and body temperature was 

monitored and maintained at 37 °C using heating 

lamps. Both common carotid arteries were 

exposed, freed from its carotid sheet, then vagus 

nerves were carefully separated. Both common 

carotid arteries were occluded for 20 min using 

Aneurism micro clips.  

During ischemia the animals were monitored 

for body temperature, loss of righting reflex and 

unresponsiveness to gentle touch.  

Subsequently, the carotid arteries were 

released and inspected for immediate 

reperfusion. Recirculation of blood flow was 

established by releasing the clips and restoration 

of blood flow in the carotid arteries was 

confirmed by observation. Animals were 

returned to their home cage after the surgery and 

kept separately for 4 days (96 hr). Then, the rats 

were killed by decapacitation after perfusion 

intracardiacally. Brains were rapidly, removed 

and put in the fixator for more than 3 days. 

 
Histopathology 

A period of 4 days after ischemia, rats           

were anesthetized intraperitoneally with 

pentobarbital-Na (40 mg/kg) and transcardic 

perfusion was performed with heparin                 

(10 U/ml) in 0.9% saline, followed by 4% 

paraformaldehyde in 0.1 M phosphate buffer 

(pH=7.4). Their brain were removed and post –

fixed in the same fixator for more than 3 days. 

Paraffin-embedded coronal sections were cut for 

Nissl
 
staining method.  

  
Nissl staining 

For Nissl staining, 10 µm-thick sections were
 

mounted directly onto gelatin-coated glass 

slides and air-dried.
 
The slides were stained 

with 1.0% cresyl violet, dehydrated, and
 
cover 

slipped with Entellan. The number of the CA1 

pyramidal cells of hippocampus in stained 

sections (3 sections of the hippocampus of 

each rat between the levels of 2/3 and 5 mm 

posterior to bregma fortune) were counted at 

x400 magnification of light microscope by 

blindly investigation. Only cells with evident 

nucleus and nucleolus were included.  Images 

were taken at x400 magnification with a 

microscope (Olympus AX-70) and analyzed by 

image tool 2 software. 

 
Morris water maze 

To assess spatial learning, the Morris water maze 

task was used and performed as previously 

described (30). Briefly, a hidden clear plastic 

platform (18 cm diameter) was placed 47 cm 

away from the wall of the water maze            

(170 cm diameter, 45-cm deep) and 2 cm below 

the water surface. The platform remained
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Figure 1. Photomicrographs of coronal sections of CA1 region of hippocampus. ((Nissl staining, Scale bar= 30µm) 

 

 
 

in the same location for all sessions and trials 

during-pretraining and testing. 

The water maze was divided into four 

quadrants and the starting quadrant was 

randomized daily, with all rats using the same 

daily order. Rats were released into the maze 

head-up and facing the wall of the maze. If an 

animal failed to find the platform in 60 sec, it 

was then placed on the platform for 20 sec. 

Each session consisted of four trials, and data 

from these four trials were averaged to form 

the daily score. Rats were allowed to rest for a 

minimum of 30 sec between trials. All animals 

were pre-trained for 4 consecutive days in the 

week preceding 2 vessels occlusion. The 

escape latency, velocity and distance were 

recorded in all trials. The behavioral data set 

was analyzed. 

 

Statistical analysis  

The significant difference was determined          

by a one-way ANOVA, followed by the 

Tukey's multiple comparison test. Statistical 

significance was defined as a P value≤ 0.05. 

Results 
Data from cell count (Nissl staining) showed 

that 20 min of bilateral common carotid 

occlusion caused marked CA1 cell loss (Figure 

1, 2). There was no statistically significant 

difference in number of viable pyramidal cells 

between control and experimental groups 

(Pvalue= 0.161).  
 

 
 

 

 

 

 

 

 

 

Figure 2. Effect of PTX on number of CA1 pyramidal 

cells in ischemia-induced memory deficit model.        

*P≤ 0.05, statistically different from ischemia and 

vehicle groups. Data are mean±SD 
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Figure 3. Effect of PTX on latency time in ischemia-

induced memory deficit model. 

*P≤ 0.05, statistically different from ischemia and 

vehicle groups. Data are mean±SD 
 

 

 
 

Figure 4. Effect of PTX on distance moved in ischemia-

induced memory deficit model. 

*P≤ 0.05, statistically different from ischemia and 

vehicle groups. Data are mean±SD 
 

In the water maze task , used to evaluate 

spatial memory expressed as latency time (s) 

and distance moved (cm) to find the hidden 

platform, the experimental group (PTX) 

significantly improved the spatial memory and 

effects were significant different from those of 

sham-operated and vehicle groups but there 

was no significant difference between the 

experimental and control groups (Figures 3, 4). 
 

Discussion 
In this study pyramidal cells of CA1 region 
were damaged and spatial memory deficit was 
seen in rats which were subjected to 20 min 
bilateral common carotid occlusion. Transient 

global cerebral ischemia is a clinical outcome 
of cardiac arrest and other situations that 
depletes the oxygen in brain during a short 
period which can lead to the loss of             
CA1 neurons of the hippocampus (31-33). 
Degeneration of the CA1 pyramidal neurons is 
associated with severe impairments of 
hippocampal functions, such as spatial 
learning and memory (34). 

Although the mechanism of 
ischemia/reperfusion (IR) remains unclear, it 
seems that reactive oxygen species (ROS) are 
one of the most important factors that induce 
neuronal death in IR insult. It is well believed 
that IR is accompanied by the excessive 
generation of ROS, which may either directly 
damage the cellular macromolecule to cause 
cellular signaling pathways or gene regulation 
to induce apoptosis (35). 

Due to the oxidative mechanism of 
ischemia-induced cell death and injury, there 
is increasing interest in focusing on 
neuroprotective agents that may ameliorate the 
damage of ROS (36).  

Anti-inflammatory properties of PTX include 
the inhibition of TNF-alpha production which is 
expressed in brain after ischemia (23). 

PTX is known to inhibit TNF-alpha, PAF 
and phosphodiesterase inhibition has been 
proposed as an effective strategy to decrease 
the severity of neonatal hypoxic-ischemic 
brain injury (37). Besides, a report indicated 
that the PTX treatment dose dependently 
prevents the occurrence of spontaneous brain 
damage, by reducing inflammatory events (38) 
what might be the case in the present study.  

PTX can block cytokine expression (39) so it 
reduces the activation of NF-Kappa B and the 
production of TNF-alpha (40-42). These anti-
inflammatory related events, associated with a 
possible action of PTX on elevating intracellular 
cAMP and reduction of oxidative stress (43-49), 
could be responsible for the neuroprotection 
afforded by this drug, leading to a decrease in 
neurologic deficits and an improvement in 
dopaminergic neurotransmission. Our data agree 
with another study suggesting that PTX reduces 
cerebral injury and preserves neurologic functions 
in transient global ischemia, in rats (50). 
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In the present study deficits in the ischemia 
and vehicle groups were observed in spatial 
memory but much better results were 
demonstrated in the water maze task in the 
experimental group. These results suggest that 
PTX has neuroprotective effect which is in 
agree with the findings of Bruno et al (51) but 
despite of that research, the effective dose of 
PTX in our study is 200 mg/kg. 

 
Conclusion 
Data from Morris water maze testing revealed 

that PTX administration in cerebral ischemia 

significantly improved hippocampal-

dependent memory and cognitive spatial 

abilities after reperfusion as compared to 

sham-operated and vehicle-treated animals.  
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