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Objective(s): In our previous study, we reported that capsaicin-induced unmyelinated 
C-fiber depletion can modulate excitatory and integrative circuits in the somatosensory 
cortex following experience-dependent plasticity. In this study, we investigated the in-
volvement of the capsaicin-induced acute inactivation of c-fibers on tactile learning in 
rat. 
Materials and Methods: The delayed novel object recognition test was used to assess 
tactile learning. This procedure consisted of two phases. The first of these (T1) was a train-
ing phase during which the animals explored two similar objects. T2, the test phase, oc-
curred 24 hr later, during which the animals explored one novel and one familiar object. 
In order to induce acute inactivation of the C-fiber pathway, 25–30 μl of a 10% capsaicin 
was injected subcutaneously into the rat’s upper lip, 6 h prior to T1. Tactile learning was 
quantified using a discrimination ratio. 
Results: In T2, the discrimination ratio in capsaicin-treated animals (37.3±3.8%) was low-
er than that observed in vehicle-treated animals (54.4±5.1%, P<0.05). 
Conclusion: These findings indicate that the selective inactivation of a peripheral nocic-
eptor subpopulation affects tactile learning.

Introduction 
One of the key attributes of the cortex is plasticity, a 

phenomenon that allows us to adapt our behavior in 
the light of experience, including the formation of new 
memories (1).

The somatosensory cortex is the key to the integration 
and analysis of sensory information, leading to the per-
ception of somatosensory stimuli. Through interactions 
with other areas in the brain such as the striatum and 
motor cortex, the somatosensory cortex enables plan-
ning, execution, and dynamic modulation of coordinat-
ed movement (2, 3). 

There is substantial evidence that unmyelinated fiber 
nociceptors play an important role in modulating recep-
tive field properties of somatosensory neurons (4, 5). 

Previous studies in rats have shown that administration 
of capsaicin, the active ingredient of the pungent capsi-
cum pepper, causes temporal inactivation (6) or perma-
nent degeneration (7) of a significant fraction of unmy-
elinated primary sensory neurons, with no significant 
proportion in myelinated afferent fibers (8). Capsaicin in-
duces receptive field changes when it is applied directly 
to the peripheral nerve (9, 10), injected subcutaneously 
(11, 12), or injected systemically into neonates (13, 14). Re-
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ceptive field changes induced by these means have been 
detected at different levels of the central nervous system, 
including the cortex (12, 15), brain stem (14, 16), and spinal 
cord (11, 17).

In a previous study, we demonstrated that following the 
induction of experience-dependent plasticity, changes in 
excitatory and integrative circuits in the somatosensory 
cortex could be further influenced by capsaicin treat-
ment (18). Here, we investigated the effect of acute inac-
tivation of the nociceptive pathway on tactile learning, 
by means of a delayed novel object recognition test. Our 
results revealed that injection of small amounts of capsa-
icin 6 h before the commencement of training impaired 
recognition memory.

Materials and Methods

Animals
A total of 30 male Wistar rats, weighing 170-210 g, were 

used for these experiments. The animals were allowed 
food and water ad libitum, and were housed in standard 
cages with a 12 hr light-dark cycle (lights on: 0700-1900 
hr), with the laboratory temperature set at 23±2.0°C. The 
experimental protocols used in this study were approved 
by the Ethics and Animal Care Committee of Rafsanjan 
University of Medical Sciences and were performed in 
accordance with the National Institutes of Health Guide-
lines for the Care and Use of Laboratory Animals. 

Object recognition task
The test apparatus was a Plexiglas arena       (35 ×35 ×35 

cm) with a black plastic floor, placed in a dimly illumi-
nated room (19, 20). The objects to be discriminated were 
square and triangular blocks made of iron. The rats’ be-
haviour was recorded by a camera positioned directly 
above the arena and subsequently analysed using Etho-
vison Software (Noldus, Wageningen, Netherlands). The 
object recognition task was done in three phases. On the 
first day, rats habituated to the empty apparatus for 30 
min. Twenty-four hr later, the training (T1) phase was ini-
tiated. Each rat was placed in the arena with two identi-
cal objects, and allowed to explore for 5 min. The position 
and shape of the objects were changed between animals 
to prevent an order or side preference affecting the re-
sults. All rats were introduced into the arena at the same 
point, and facing the same direction. The test phase (T2) 
was conducted 24 hr after T1. During T2, each rat was re-
turned to the arena which contained the familiar object, 
the position of which was consistent in both trials, and a 
novel object, for 5 min. To avoid the presence of olfactory 
cues, the box and objects were thoroughly cleaned with 
70% ethanol between rats (21, 22). The time spent explor-
ing each object and the total time spent exploring both 

objects were recorded. Exploration of an object was de-
fined as pointing the nose to the object at a distance≤2 
cm. Climbing or sitting on an object was not considered 
exploration. A discrimination index was calculated based 
on the difference in time exploring the novel and famil-
iar objects, expressed as the ratio of the total time spent 
exploring both objects. 

Capsaicin treatment 
The rats were injected with either capsaicin solution 

(25-30 µl of 10% capsaicin dissolved in 10% Tween 80, 10% 
ethyl alcohol, and 80% saline) or vehicle. Injections were 
made subcutaneously through a 30-gauge needle into 
the upper lip, 6 mm away from the whisker pad, nearest 
to whiskers E2 and E3 (6). This occurred 6 hr before the 
commencement of the T1 phase of the novel object rec-
ognition test and under light ether-induced anaesthesia.

Experimental groups
The rats were randomly allocated into the following ex-

perimental groups (10 rats per group). Group 1 animals 
received capsaicin 6 hr before the commencement of T1. 
Group 2 animals received vehicle 6 hr before the com-
mencement of T1. Group 3 was a control group in which 
no injection was performed. 

Statistical analysis
 Data were analyzed for statistical significance using 

ANOVA. Data are expressed as mean±SEM. A P-value<0.05 
was taken to be significant. All post-hoc comparisons 
were made using Tukey’s post-hoc test. Paired-sample t-
test was used for comparing travelled distance between 
T1 and T2.

Results
Activity levels were assessed by measuring the distance 

travelled during training phase (T1) and test phase (T2). 
Comparing the travelled distance in T1 and T2 for all 

three groups represents no significant differences be-
tween two phases (in vehicle group P=0.2, in capsaicin-
treated group P=0.7, and in control group P=0.8) (Figure 
1). In the capsaicin treated animals, the travelled distance 
was not different compared with vehicle-treated group 
(in T1, P=0.8 and in T2, P=0.5) (Figure 1). 

Object recognition task: training phase (T1)
The total time spent exploring sample objects in T1 (Fig-

ure 2) was not statistically significant between three ex-
perimental groups (P=0.8). During T1, no reliable differ-
ences were found among the three experimental groups 
(Figure 3) for the frequency of visits to the sample objects 
(P=0.2).
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Figure 1. Comparison of the activity level in three experimental groups. 
Activity levels measured as distance travelled in 5 min during the T1 and 
T2 phases (21). All data are expressed as mean±SEM
T1: training phase, T2: test phase
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Figure 2. Time spent exploring objects in the phase T1 of the object rec-
ognition task. All data are expressed as mean±SEM
T1: training phase, T2: test phase
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Figure 3. Frequency of visits to the objects in the phase T1 of the object 
recognition task. All data are expressed as mean±SEM
T1: training phase, T2: test phase
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Object recognition task: test phase (T2)
Object exploration times for the experimental groups 

during the test phase (T2) are shown in the Figure 4. The 
means (mean±SEM) of total exploration time of both ob-
jects (familiar+novel) were 45.1±6.9 sec (control group), 
52.9±9.7 sec (vehicle-treated group), and 35.3±8.8 sec (cap-
saicin-treated group). Differences among these groups 
were not significant (P=0.4).

Figure 4. Time spent exploring the familiar and novel objects in the 
phase 2 of the object recognition task. All data are expressed as mean±SEM
T1: training phase, T2: test phase
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In the capsaicin-treated group, the mean time spent ex-
ploring the novel object (14.3±4.9 sec) was less than that 
observed for the control (27.6±4 sec) and vehicle-treated 
(27±4.9 sec) groups although the difference was not sta-
tistically significant (P=0.1).

Figure 5. Frequency of visits to familiar and novel objects in the phase 2 
of the object recognition task. All data are expressed as mean±SEM
T1: training phase, T2: test phase
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During T2, no reliable differences were found between 
the three experimental groups for the frequency of visits 
to the sample objects (Figure 5).

Comparison of the discrimination ratio among the 
three experimental groups revealed that this index was 
lower for capsaicin-treated animals (37.3±3.8%) than for 
vehicle-treated (54.4±5.1%) animals (P<0.05) (Figure 6). 
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In humans, application of capsaicin cream to the skin of 
the hand has been shown to affect two-point discrimina-
tion, and impair the ability to detect differences in rough-
ness (25). Carrillo et al (1994) have also reported that neo-
natal capsaicin treatment causes a significant increase in 
scratching, rearing, grooming, and searching behaviors 
in rats. Furthermore, in a recent study, Fan et al. (2009) 
(26) demonstrated that applying capsaicin to the sciatic 
nerve differentially blocks nocifensive components of 
behavior such as flinch, withdrawal, and licking, but not 
non-nocifensive responses including slow body motion, 
turning, running, or exploration involving translocation 
of the body. However, as these authors recorded the rats’ 
behavior for only 2 min, and used body translocation 
for assessing exploratory behaviors, further studies are 
needed to clarify the behavioral significance of the noci-
ceptor pathway.

Study limitation
There are some reports that capsaicin induces behav-

ioral responses like itching and licking associated with 
pain in the region (27-29). Therefore, the capsaicin could 
have a direct effect on the whiskers tactile region altering 
the sensitivity of the rats to nociceptive and mechanical 
stimulation. However, other studies reported that ap-
plying capsaicin to the sciatic nerve differentially blocks 
nocifensive components of behavior such as flinch, with-
drawal, and licking (26). Further studies are needed to 
address this issue. When we injected capsaicin subcuta-
neously into the rat’s upper lip, 6 hr prior to T1, some of 
them remained less active even 6 hr after we recorded 
training phase. In order to conclude that the capsaicin 
interferes with tactile learning, it is required that activity 
level and the total exploration time during the T1 be simi-
lar for all groups. Therefore, we discarded these animals 
from our study.  

Conclusion 
In summary, when taken together, the results of this 

and previous studies (6, 18, 23, 24) demonstrate that no-
ciceptor information may be important in modulating 
both behavioral aspects of somatosensory function and 
electrophysiological properties of cells in somatosensory 
cortex. 
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