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Objective(s): Triple-negative breast cancer (TNBC), which affects 15–20% of cases, lacks targeted 
therapies and poses challenges in treatment. MicroRNAs (miRNAs) are potential biomarkers and 
therapeutic targets in breast cancer. To unravel its unique regulatory role, this study focused on 
miRNA microarray analysis, particularly miR-548F-3p, in TNBC samples.
Materials and Methods: Using the GSE76275 dataset, gene expression profiles were analyzed using 
the Affymetrix Human Genome U133 Plus 2.0 Array. Differentially expressed genes (DEGs) were 
identified using robust preprocessing. Weighted gene co-expression network analysis (WGCNA) 
explored gene modules and identified hub genes co-expressed with miR-548F-3p. Functional 
enrichment and protein-protein interaction (PPI) network analyses were conducted. Survival analysis 
was used to assess the prognostic impact of the identified genes.
Results: The study found 224 up-regulated DEGs, with miR-548F-3p exhibiting significant down-
regulation. MultimiR identified 400 genes that were targeted by miR-548F-3p. WGCNA revealed 
a blue co-expression module, with 356 genes targeted by miR-548F-3p. A Venn diagram identified 
common genes, including VANGL2, BRCC3, ANP32E, and ANLN. Functional enrichment highlighted 
crucial pathways in TNBC pathogenesis, including mitotic spindle organization, spindle assembly 
checkpoint signaling, cell cycle, and amino acid (serine) metabolism. PPI network analysis identified 
hub genes, including FOXM1, KIF23, and CDC20. VANGL2, BRCC3, ANP32E, and ANLN were 
significantly associated with patient outcomes in survival analysis.
Conclusion: This analysis highlighted TNBC’s molecular landscape, emphasizing miR-548F-3p’s 
regulatory role. The identified genes, VANGL2, BRCC3, ANP32E, and ANLN, offer insights into TNBC 
pathogenesis and potential therapeutic targets, laying the foundation for understanding their clinical 
implications in the intricate landscape of TNBC.
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Introduction
Triple-negative breast cancer (TNBC) is a very aggressive 

tumor that primarily affects young women. TNBC is often 
detected at a later stage and lacks specific treatment options 
(1). TNBC, which accounts for 15–20% of breast cancer 
cases, is a unique subtype characterized by the absence 
of estrogen receptors, progesterone receptors, and HER2 
receptors on the cell surface (2). Analysis of gene expression 
patterns revealed that TNBC is categorized as a basal-like 
breast cancer subtype (3). Compared with other subtypes 
of breast cancer, TNBC often develops in young women 
and is associated with higher levels of aggressiveness and 
death (4). Approximately 46% of individuals diagnosed with 
TNBC experience distant metastases occurring in either the 
brain or other regions of the body (5). Consequently, the 
average survival duration was found to be approximately 
13.6 months (6). Multiple investigations have shown that 
as many as 25% of patients diagnosed with TNBC have 
the potential to achieve recovery. The utilization of anti-
metabolites, paclitaxel, and anthracyclines in adjuvant 

and neoadjuvant chemotherapy for individuals diagnosed 
with TNBC has been approved by the Food and Drug 
Administration (FDA) (7). Regular chemotherapy has shown 
a degree of efficacy in individuals diagnosed with TNBC. 
Nevertheless, the deleterious effects of chemotherapy pose 
a significant risk to patients; regrettably, there are instances 
when patients fail to derive any therapeutic advantages. 
Hence, identifying optimal targets for the precise treatment 
of TNBC is a complex and crucial therapeutic issue that 
requires resolution (8). MicroRNAs (miRNAs) are short 
RNA molecules, approximately 20–25 nucleotides long, that 
naturally occur within an organism and do not code for 
proteins. They regulate gene expression after transcription 
by removing targeted mRNA or inhibiting its translation. 
This regulation occurs through miRNA binding to their 
target mRNAs’ 3′ untranslated region (3′UTR) (9). miRNAs 
play crucial roles in multiple biological processes, such as cell 
proliferation, death, and development (10). It is essential to 
acknowledge the importance of genetic variables, including 
genes and miRNAs, in understanding and tackling the 
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resistance of TNBC to traditional chemotherapy. This 
recognition is essential for developing targeted and effective 
treatment approaches to improve patient outcomes.

The swift progress of microarray and next-generation 
sequencing technology allows researchers to discern changes 
in gene expression data across various cancer types (11). 
Weighted gene co-expression network analysis (WGCNA), 
commonly known as weighted correlation network analysis, 
is a systematic biological approach used to characterize the 
correlation of gene expression across multiple datasets. This 
method has been widely applied to unveil highly pertinent 
gene clusters, known as modules, and identify potential hub 
genes by evaluating the connections among gene modules 
and the correlation between gene modules and clinical 
characteristics (12).

This study used publicly accessible TNBC datasets. After 
identifying genes with altered expression and miRNAs 
showing significant changes, further investigation into 
their expression was conducted. Using WGCNA, genes 
co-expressed with the specific miRNA of interest were 
methodically identified. Gene enrichment was explored, 
and protein-protein interaction (PPI) networks were 
created. We aimed to understand the complex molecular 
interactions within TNBC to gain valuable insights into the 
regulatory networks of genes and miRNAs.

Materials and Methods
Gene microarray data

In this study, gene microarray data were obtained from the 
GSE76275 dataset of the Gene Expression Omnibus (GEO) 
database, chosen for its comprehensive representation and 
relevance to the research focus. The dataset was selected 
because of its extensive coverage of 256 samples encompassing 
diverse breast cancer subtypes, including 198 cases of 
TNBC. The dataset includes detailed patient information, 
such as tissue type, sex, race, body mass index (BMI), and 

menopausal status, along with histology group classifications 
and specific breast cancer types. It also provides essential 
data on the estrogen receptor (ER), progesterone receptor 
(PR), and HER2 status, which are crucial for treatment 
implications. Additionally, it confirms triple-negative status 
and includes measurements of tumor size, positive lymph 
nodes, and metastasis presence at diagnosis.

This broad representation ensures that the analysis captures 
the spectrum of gene expression patterns across various breast 
cancer phenotypes, thereby enhancing the robustness and 
applicability of the findings to research objectives. Our study 
focused on comparing gene expression profiles among the 
categories above. The Affymetrix Human Genome U133 Plus 
2.0 Array (GPL570) was utilized to generate the microarray 
data, which enabled an exhaustive examination of the gene 
expression patterns linked to TNBC.

Data preprocessing and differentially expressed genes 
(DEG) Identification

Gene microarray data were obtained from GEO and 
preprocessed using R software version 4.3.2. A robust 
multichip average (RMA) application was utilized 
for background correction, normalization, and probe 
summarization. The limma (Linear Models for Microarray 
Analysis) application was used to identify DEGs between 
TNBC and other breast cancer subtypes after normalization. 
Limma is a powerful tool known for its robust statistical 
methods and flexibility in analyzing microarray data 
and accurately identifying gene expression changes. The 
preliminary examination utilized a rigorous criterion, 
which included a log-fold change (logFC) of no less than 
1 or greater than -1 and an adjusted P-value (adj.P.Value) 
below 0.01. Following that, to visually evaluate the efficacy 
of the preprocessing procedures and detect possible outliers, 
box plot diagrams were constructed from the normalized 
data (Figure 1a). Volcano graphs were generated to depict 

Figure 1. Integrated analysis of gene expression and co-expression networks in TNBC
(a) Boxplot depicting the distribution of gene expression values post-normalization for the GSE76275 dataset. (b) Volcano plot illustrating the DEGs between TNBC and other 
breast cancer subtypes, highlighting the relationship between log fold change (logFC) on the x-axis and statistical significance (adj.P.Value) on the y-axis. (c) Evaluation of scale-
free topology for weighted gene co-expression network construction, showing scale independence and mean connectivity across various soft-thresholding powers. (d) Clustering 
dendrogram presenting co-expressed genes, with the visual representation of gene modules identified through weighted correlation network analysis. (e) Heatmap depicting the 
topological overlap matrix, illustrating co-expression relationships among identified modules. (f) Venn diagram analysis revealed 118 common genes across at least two gene lists, 
indicating potential shared regulatory mechanisms.
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the distribution of DEGs, emphasizing the correlation 
between logFC and statistical significance (Figure 1b). The 
miRNA exhibiting the most pronounced reduction was 
chosen as the target and targeted with the multiMiR package 
expands the analytical scope by extracting targets from 
mircode, mirTarbase, and Tarbase, enabling comprehensive 
investigation of potential regulatory networks associated with 
the identified DEGs, thereby enriching the understanding of 
molecular mechanisms underlying breast cancer subtypes.

WGCNA analysis 
After preprocessing the data, the expression matrix 

was processed using the WGCNA package with identical 
threshold criteria, as previously stated. WGCNA is a powerful 
systems biology approach that identifies modules of highly 
correlated genes across samples, facilitating the exploration 
of gene networks and their relationships with clinical traits. 
By leveraging network theory principles, WGCNA enables 
the identification of co-expressed gene modules, providing 
a holistic view of the underlying biological processes that 
drive breast cancer subtypes.

A systematic process was employed to eliminate outlier 
samples, and the absent values were filtered. The co-
expression network structure and intended miRNA co-
expression module were determined by constructing a 
similarity matrix among all genes using Pearson’s correlation 
coefficient. A lenient threshold of nine was established to 
satisfy the scale-free co-expression network relationship. 
Following this, the adjacency matrix was utilized to 
deduce the topological overlap matrix and to facilitate the 
hierarchical clustering of genes using dynamic cut-tree 
algorithms, and the corresponding dissimilarities were 
computed. Furthermore, the power threshold implemented 
during the WGCNA method, which is critical for establishing 
module relationships, is represented graphically on the ‘Soft 
power’ graph (Figure 1c). The process of integrating distinct 
modules based on high similarity is depicted in the ‘Merge’ 
graph (Figure 1d). The ‘Tomplot’ offers valuable insights 
into the topological characteristics of the co-expression 
network (Figure 1e).

Gene functional annotation analysis
An exhaustive gene functional annotation analysis was 

performed to elucidate the biological importance of genes 
that were identified through GSE analysis, specifically those 
exhibiting heightened expression. The convergence of genes 
obtained from the multiMiR package, those predicted 
from the GSE analysis (up-regulated DEGs), and the 
desired miRNA co-expression module from WGCNA was 
the primary focus of our investigation. Convergence was 
symbolically represented through the utilization of a Venn 
diagram, which highlighted common elements among 
these unique gene sets. Following this, genes that appeared 
in at least two sets in the Venn diagram were selected for 
additional examination. Subsequently, a comprehensive 
functional annotation analysis was conducted using the 
EnrichR database. The scope of this investigation included 
a variety of Gene Ontology (GO) classifications, including 
Molecular Function (MF), Biological Process (BP), Cellular 
Component (CC), and pathways obtained from the 
WikiPathways database.

PPI network analysis and hub gene identification
A comprehensive PPI analysis was performed to clarify 

the potential connections. This involved exploring shared 
genes among the up-regulated DEGs, the identified miRNA 
co-expressed module through WGCNA, and the predicted 
genes from the multiMiR package. Utilizing the Cytoscape 
software (V. 3.10.1), a systematic mapping of common 
genes onto the PPI network was conducted. Subsequently, 
Cytohubba, a Cytoscape plugin known for its ability to 
identify key hub genes within biological networks, was 
employed to systematically select the top 10 hub genes 
based on their connectivity within the PPI network, thereby 
providing insights into potential central players regulating 
biological processes associated with breast cancer subtypes. 

Survival analysis
To examine the prognostic significance of the identified 

genes (ten hub genes and five shared genes in three gene 
lists), a survival analysis was conducted using the ULACAN 
online database (13), which incorporated clinical data 
from GSE76275 breast cancer patients. ULACAN offers a 
user-friendly interface and comprehensive analysis tools 
to explore the association between gene expression profiles 
and patient outcomes, thereby providing valuable insights 
into the prognostic relevance of the identified genes in 
the context of breast cancer. Relapse-free survival (RFS) 
and overall survival (OS) were assessed to determine the 
effects of gene expression on patient outcomes. Using 
the ULACAN platform, Kaplan-Meier survival curves 
were constructed in real-time, depicting the likelihood of 
survival for unique gene expression groups. The statistical 
significance of survival differences between these groups 
was determined using the log-rank test. Genes that exhibit 
a substantial correlation with survival outcomes may be 
recognized as prospective prognostic indicators, yielding 
valuable insights into their potential clinical applicability in 
breast cancer prognosis.

Results
Gene microarray data, data preprocessing, and WGCNA 
analysis

We identified 224 differentially expressed genes (DEGs) 
that were up-regulated in our exhaustive analysis of the 
gene microarray data obtained from the GSE76275 dataset. 
We used stringent criteria, including a log-fold change 
(logFC) of at least ±1 and an adjusted P-value (adj.P.Value) 
of less than 0.01. It is worth noting that miR-548F-3p 
exhibited the most significant reduction in expression 
among the miRNAs. Additional investigation using the 
multiMiR package revealed the identity of 400 predicted 
target genes for miR-548F-3p. Entertaining patterns 
were revealed in the co-expression network via WGCNA 
analysis. It is worth mentioning that the blue module, 
which contained 356 genes that exhibited co-expression 
with miR-548F-3p, contained the target miR-548F-3p. 
This discovery offers insights into possible regulatory 
networks linked to this miRNA. An integrative analysis 
was conducted on the up-regulated DEGs, genes from 
the desired miRNA co-expressed module obtained from 
WGCNA, and predicted genes from the multiMiR package, 
employing the Venn diagram methodology illustrated in 
Figure 1f. This analysis identified 118 genes shared by at 
least two gene collections. It is noteworthy that five genes, 
specifically Solute Carrier Family 16 Member 1 (SLC16A1), 
BRCA1/BRCA2-containing complex 3 (BRCC3), SRY-Box 
Transcription Factor 4 (SOX4), Acidic (Leucine-Rich) 
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Nuclear Phosphoprotein 32 Family Member E (ANP32E), 
and Van Gogh-Like Protein 2 (VANGL2), were discovered 
to be shared across all three gene collections. 

Functional enrichment analysis of common genes
An analysis of functional enrichment was conducted 

on the 118 genes present in a minimum of two gene lists. 
The results revealed a spectrum of biological processes 
implicated in the pathogenesis of breast cancer (Figure 
2a), including negative regulation of metaphase/anaphase 
transition, spindle assembly checkpoint signaling, and 
mitotic spindle organization. Associations with intracellular 
membrane-bounded organelles, nuclei, spindles, 
microtubule cytoskeletons, and nuclear chromosomes were 
identified through cellular component analysis (Figure 2b). 
The roles of microtubule and tubulin binding, histone H3 
methyltransferase activity, DNA replication origin binding, 
and transcription co-regulator binding were identified 
through molecular function annotations (Figure 2c). 
Significant involvement in critical pathways, including the 
cell cycle, amino acid metabolism in retinoblastoma cells, 
serine metabolism, the retinoblastoma gene in cancer, and 
metabolic pathways of fibroblasts, was identified through 
pathway enrichment (Figure 2d). 

PPI network analysis and hub gene identification
An exhaustive PPI network analysis was performed to 

elucidate potential interactions between the 118 common 
genes identified from the up-regulated DEGs, the Desired 
miRNA co-expressed module from WGCNA, and the 
predicted genes from the multiMiR package. The Cytoscape 
software was utilized to map the shared genes methodically 
onto the PPI network. Subsequently, the degree method 
was employed by Cytohubba to rigorously ascertain 
the ten most significant hub genes within the network. 
As illustrated in Figure 3, the generated PPI network 

Figure 2. Functional and Pathway Enrichment Analysis of Shared Genes with a Bar Graph Representation of Significance (P<0.05) Across Biological 
Processes, Cellular Components, Molecular Functions, and Wikipath
(a-d). Represents BPs, CCs, MFs, and Wikipathways enrichments. The length of each bar corresponds to the P-value, indicating the significance level of enrichment. Longer bars 
represent more significant enrichments. We identified substantial enrichment of gene sets by setting a threshold of P-value<0.05.

Figure 3. PPI network analysis. The PPI network resulting from the 
analysis consisted of 57 nodes interconnected by 542 edges, representing 
potential protein-protein interactions among the identified genes
Genes are depicted in rectangle format, while interactions are represented by lines 
connecting the nodes. Within this complex network, specific genes exhibited higher 
connectivity and centrality, indicating their significance in the network. The top 
hub genes, ranked by degree method, are highlighted in red, orange, and yellow, 
emphasizing their central roles in the network. These top hub genes include FOXM1 
(Score: 38, Log2FC: 1.359329, Adj.P.Val: 5.31E-12), KIF23 (Score: 37, Log2FC: 
1.126213, Adj.P.Val: 1.07E-10), CDC20 (Score: 37, Log2FC: 1.638208, Adj.P.Val: 
2.43E-15), TYMS (Score: 35, Log2FC: 1.016491, Adj.P.Val: 2.11E-18), BUB1B (Score: 
35, Log2FC: 1.120616, Adj.P.Val: 6.62E-10), BIRC5 (Score: 34, Log2FC: 1.137402, 
Adj.P.Val: 5.74E-11), BUB1 (Score: 33, Log2FC: 1.573514, Adj.P.Val: 2.09E-13), 
EZH2 (Score: 33, Log2FC: 1.233123, Adj.P.Val: 5.90E-10), ANLN (Score: 33, Log2FC: 
1.182217, Adj.P.Val: 3.36E-07), and PRC1 (Score: 33, Log2FC: 1.066060, Adj.P.Val: 
1.50E-08).
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consisted of 57 interconnected nodes along 542 edges. 
This intricate configuration effectively depicts the potential 
protein-protein interactions that may occur among the 
identified genes. The main hub genes, namely Forkhead 
Box M1 (FOXM1), Kinesin Family Member 23 (KIF23), 
Cell Division Cycle 20 (CDC20), Thymidylate Synthase 
(TYMS), Budding Uninhibited by Benomyl 1 Homolog Beta 
(BUB1B), Baculoviral IAP Repeat Containing 5 (BIRC5), 
Budding Uninhibited by Benomyl 1 (BUB1), Enhancer of 
Zeste 2 (EZH2), Anillin Actin Binding Protein (ANLN), 
and Protein Regulator of Cytokinesis 1 (PRC1), were 
identified, indicating their critical roles and prominence in 
the network. Table 1 presents the expression details of the 
top ten hub genes. Furthermore, a separate network analysis 
was performed on miR-548F-3p and the five genes present 
in all three gene lists (Figure 4). 

Survival analysis results
The ULACAN survival analysis of breast cancer patients 

using the GSE76275 dataset revealed that 14 of the 15 genes 
analyzed exhibited up-regulated expression, while SLC16A1 
was down-regulated. It is worth mentioning that areas 
shared by three gene lists (ANP32E), VANGL2, BRCC3, and 
ANLN (a hub gene), exhibited substantial correlations with 

patient outcomes, specifically OS and RFS (Figure 5). Based 
on TCGA datasets, Figure 6 depicts the expression levels 
of desired genes in normal and primary tumor samples. 
The results of this study highlight the possible prognostic 
significance of these genes in TNBC.

Discussion
Breast cancer is recognized as a multifaceted and diverse 

illness characterized by different molecular subcategories 
and varying responses to treatment. Despite significant 
advancements in breast cancer treatment, including 
endocrine therapy and HER2-targeted therapy, there is 
currently a lack of molecularly targeted treatments for 
patients with TNBC. Recent research has shown that 
miRNAs might be used as biomarkers and targeted for 
therapy in breast cancer (14), with the potential to influence 
disease progression, stage, and genetic predisposition (15). 
The progression of TNBC is often marked by increasing 
aggressiveness and metastatic potential; for example, studies 
have shown that elevated levels of miR-21 correlate with 
advanced disease stages and poorer outcomes (16). The 
stage at which TNBC is diagnosed significantly influences 
treatment choices and patient prognosis. For example, a 
specific miRNA profile consisting of six distinct miRNAs 
(miR-21, miR-221, miR-210, miR-195, miR-145, and let-7a) 
has been linked to advanced stages, elevated tumor grades, 
and negative hormone receptor status in Indian women with 
TNBC (17). Furthermore, genetic predisposition plays a 
vital role in TNBC, as specific miRNA variants—such as the 
miR-423-5p AC genotype found in European populations—
are linked to a higher risk of breast cancer compared to the 
CC and AA genotypes seen in Asian and African women, 
respectively (18).

This study performed miRNA microarray analysis on 
TNBC samples compared to other breast cancer forms, 
enhancing our understanding of the complex molecular 
landscape of the disease. We focused on miR-548F-3p, a 
novel miRNA that appears particularly relevant to TNBC. 
Located on the X chromosome at Xp21.1 (19), miR-548F-
3p offers unique insights into the regulatory processes 
driving TNBC. The expression profile illustrated in the 
human GeneAtlas U133A (20) reveals miR-548F-3p 

Figure 4. MiRNA-gene-pathway network for miR-548F-3p and common genes
The miRNA-gene-pathway network illustrates the interactions between miR-548F-3p and five common genes (VANGL2, BRCC3, ANP32E, SLC16A1, and SOX4) identified across 
all three gene lists. The network represents the regulatory relationships between miRNA and target genes and their associations with specific pathways. The nodes in the network 
correspond to miR-548F-3p, the five common genes, and relevant pathways, while the edges depict the connections between them, indicating the regulatory interactions. This 
network provides insights into the potential roles of miR-548F-3p and its target genes in specific pathways, further contributing to our understanding of their involvement in 
breast cancer pathogenesis.

Table 1. Comprehensive expression details of the top 10 hub genes identified 
and ranked by degree method including their associated expression levels 
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activity across various organs, with the highest expression 
levels found in the retina, followed by the cerebellum and 
cerebellar peduncles. Additionally, this study innovatively 
integrates advanced bioinformatics techniques, including 
WGCNA and PPI networks, to elucidate the regulatory 
networks involving miR-548F-3p and its target genes in 
TNBC, thereby establishing a comprehensive framework 
for potential therapeutic interventions.

Understanding the pathways driving TNBC 
aggressiveness and the role of targeted molecules are 
essential for effective treatment strategies. Key pathways 
include cell cycle regulation with overexpressed cyclin-
dependent kinases (CDKs), leading to unchecked cell 
division (21); the PI3K/AKT/mTOR pathway, which is 
hyperactivated, promoting tumor growth and therapy 
resistance (22); and DNA repair defects involving BRCA1/2 
(23) and PARP (24), making tumors more susceptible to 
specific treatments. Additionally, pathways such as androgen 
receptor signaling and RAS/MAPK contribute to tumor 
progression and present potential therapeutic targets (25). 
This comprehensive molecular understanding is critical 
for developing innovative treatment strategies, particularly 
combination therapies that can improve TNBC patient 
outcomes. Our functional enrichment analysis further 
elucidated the molecular foundations driving breast cancer 
pathogenesis by identifying the major biological processes 
involved in its growth and progression. The focus on mitotic 
spindle organization emphasizes the importance of precise 
cell division, which is required for proper chromosomal 
segregation during proliferation and, when dysregulated, 
is a marker of cancer-associated genomic instability and 
aneuploidy (26). Equally important is the focus on spindle 
assembly checkpoint (SAC) signaling, which emphasizes 
its precise regulatory mechanisms in guaranteeing 
mitotic spindle formation integrity. The involvement of 
SAC in delaying chromosome segregation until correct 

attachments are formed is critical, particularly in cancer 
cells where chromosomal instability (CIN) is prevalent 
and often caused by undiagnosed attachment defects (27). 
Defects in spindle formation, particularly those involving 
the microtubule-binding protein TPX2, lead to attachment 
errors and CIN, which correlates with the aggressiveness 
of many human tumors (28). Furthermore, identifying 
negative regulation of the metaphase/anaphase transition 
highlights the tight control exercised over cell development 
through the cell cycle phases, emphasizing its crucial 
function in maintaining genomic integrity. In the cancer 
context, techniques targeting the metaphase-anaphase 
transition show potential for developing cell cycle-selective 
therapeutics (29). Furthermore, data from a thorough study 
of 1135 breast cancer patients with up to a 22-year follow-
up demonstrated the predictive value of immunoexpression 
for the combination of Securin and Separase, regulatory 
proteins involved in the metaphase/anaphase transition. 
This combination has emerged as an effective predictive tool 
for identifying individuals at risk of breast cancer-related 
death (30).

Furthermore, our comprehensive pathway enrichment 
analysis revealed a diverse landscape of the major molecular 
pathways intimately implicated in breast cancer, offering a 
better understanding of the underlying cellular processes. 
The strong participation in the cell cycle route emphasizes 
the importance of cell division control, validating the idea 
that dysregulation in this complex process, such as cell 
cycle-related enhanced biological processes, is a hallmark 
of cancer, as identified in other studies (31-33) utilizing 
identical methods. Aberrant cell cycle progression often 
leads to uncontrolled proliferation, a distinguishing feature 
of malignant cells (34). The discovery of amino acid 
metabolism in TNBC cells as a considerably enhanced 
pathway provides information on metabolic changes specific 
to this aggressive subtype. Amino acid metabolism is critical 

Figure 5. Survival analysis was conducted to investigate the prognostic implications of 15 genes, including the five shared genes identified in all three gene 
lists and the ten hub genes
The analysis utilized the ULACAN online database and incorporated clinical data from breast cancer patients in the GSE76275 dataset. Both OS and RFS analyses were performed 
to assess the impact of gene expression on patient outcomes. Kaplan-Meier survival curves were generated using the ULACAN platform, providing a visual representation of the 
probability of survival over time for distinct gene expression groups. The statistical significance of survival differences between these groups was assessed using the log-rank test, 
with a P-value threshold of 0.05 considered statistically significant. Genes demonstrating a significant association with survival outcomes may be identified as potential prognostic 
markers.
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for cancer cell proliferation and survival, and dysregulation 
is becoming recognized as a defining trait in many cancer 
forms, including TNBC (35). In this context, Jeon et al. 
discovered that restricting methionine consumption 
inhibits tumor development and metastasis in TNBC 
(36). The predominance of serine metabolism revealed the 
possible metabolic weaknesses of the TNBC cells. Serine 
metabolism is recognized to be required for nucleotide 
synthesis and redox equilibrium, which are critical elements 

enabling cancer cells’ fast proliferation and survival (37). 
Notably, TNBC cells treated with doxorubicin underwent 
metabolic remodeling, resulting in enhanced serine 
synthesis mediated by phosphoglycerate dehydrogenase 
(PHGDH). Serine is then converted to glutathione, which 
inhibits the generation of reactive oxygen species generated 
by doxorubicin. As a result, inhibition of PHGDH may 
increase the sensitivity of cells to doxorubicin (37). This 
dynamic relationship between amino acid metabolism, 

Figure 6. Expression of the desired gene in normal and primary tumor samples using TCGA database in ULCAN
The expression levels of the desired gene in normal and primary tumor samples were analyzed using the TCGA database within the ULCAN platform. The expression data is 
presented in a bar graph format, with the x-axis representing the sample groups (normal vs primary tumor) and the y-axis representing the expression level of the desired gene. The 
bars indicate the mean expression values and error bars may be included to represent the mean's standard deviation or standard error. (a), VANGL2, TYMS, SOX4. (b), ANP32E, 
BRCC3, BUB1B. (c), ANLN, B1RC5, BUB1. (d), SLC16A, PRC1, KIF23. (e), CDC20, FOXM1, EZH2
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especially serine metabolism, and chemotherapy response 
demonstrates TNBC’s complicated metabolic landscape and 
suggests possible therapeutic interventions.

In our investigation of TNBC, we examined the critical 
genes related to patient outcomes, including VANGL2, 
BRCC3, ANP32E, and ANLN. The VANGL2 gene produces 
a membrane protein that regulates planar cell polarity, 
notably in the cochlea’s stereociliary bundles (38). VANGL2 
mutations cause severe developmental abnormalities, 
emphasizing their critical role in embryonic tissue 
organization (39). VANGL2 shows enhanced expression 
in 24% of invasive breast carcinomas compared to healthy 
tissues (39). Furthermore, increased levels of VANGL2 are 
linked to higher rates of recurrence and reduced metastasis-
free survival in breast cancer patients (40). The protein 
BRCC3 is a complex component containing breast cancer 
type 1 susceptibility protein and breast cancer type 2 
susceptibility protein. BRCC3 functions as an E3 ubiquitin 
ligase (41). The presence of BRCC3 is correlated with 
enhanced cellular proliferation and metastasis of TNBC 
(42). 

ANP32E, an acid nuclear phosphoprotein and a leucine-
rich repeat protein family member, has diverse activities in 
cell adhesion, early mammalian development, and cancer 
metastasis (43). ANP32E has been recognized as part of 
a six-gene profile linked to lung metastases in the setting 
of breast cancer (44). Xiong et al. discovered that elevated 
expression of ANP32E is linked to poorer overall survival 
and heightened chances of disease recurrence in TNBC. 
This highlights ANP32E’s significance as an autonomous 
prognostic factor. Moreover, ANP32E stimulates the 
proliferation of TNBC cells by triggering the transition 
from the G1 to the S phase and promoting tumor formation 
through the transcriptional activation of E2F1 (45). Ruff 
et al.’s findings suggest that ANP32E may regulate breast 
cancer development and tumor plasticity by controlling the 
chromatin state (46). 

An essential role in cytokinesis has been attributed to 
Anilin (ANLN). ANLN resides within the nucleus during 
the cell cycle interphase. ANLN assembles in the cytoplasm 
during telophase, forming a contractile ring and cleavage 
furrow through interactions with various proteins, such as 
myosin, F-actin, RhoA, and septin (47). Research has shown 
that ANLN promotes the growth of cancer cells by controlling 
the course of the cell cycle. In instances such as ANLN-
depleted breast cancer lines, the presence of polynucleated 
cells was detected, and cell growth was suppressed (48). 
Furthermore, breast cancer patients with elevated ANLN 
expression levels demonstrated a substantially worse overall 
survival rate (49). ANLN has been suggested as a prognostic 
marker for breast cancer; however, its relevance in TNBC 
and its regulatory molecular mechanisms remain unknown. 
Maryam et al. discovered that the expression of ANLN, 
driven by super-enhancers unique to TNBC, contributes to 
the clonogenicity of TNBC. They also identified TWIST1 
and BMP2 as crucial genes that mediate ANLN’s role 
in maintaining stemness (50). An investigation of the 
functions of the VANGL2, BRCC3, ANP32E, and ANLN 
genes in patient outcomes, specifically as target genes of 
miR-548F-3p in TNBC, offers a significant understanding 
of the intricate regulatory networks that control these 
genes in TNBC. This study enhances our understanding of 
these genes’ clinical consequences and possible therapeutic 
significance in the complex TNBC landscape.

This study effectively analyzed gene expression profiles in 
breast cancer by leveraging robust statistical methods, such 
as WGCNA and PPI network analysis. However, its reliance 
on a single dataset (GSE76275) limits generalizability, as the 
findings may not represent a broader population or other 
subtypes. Moreover, although gene microarray data offer 
valuable insights, they fail to capture the complexity of gene 
regulation, including post-transcriptional modifications. 
Despite their rigor, the statistical methods could be affected 
by sample heterogeneity, and survival analysis is constrained 
by limited clinical data, potentially overlooking confounding 
factors. To enhance future research, incorporating data 
from multiple independent cohorts is recommended to 
improve generalizability and address confounding factors in 
the survival analysis. Additionally, exploring a multi-omics 
approach is crucial for advancing the understanding of the 
molecular mechanisms underlying breast cancer.

Conclusion
In brief, our research provides a comprehensive 

investigation into the molecular complexities of TNBC, 
revealing the unparalleled significance of miR-548F-3p and 
shedding light on the complex regulatory networks. The 
spatial specificity and expression patterns unique to specific 
tissues highlight the potential regulatory functions that 
miR-548F-3p may have in different tissues. By conducting 
functional enrichment and pathway analyses, we highlighted 
the significance of spindle assembly checkpoint signaling, 
TNBC-specific metabolic adaptations, and mitotic spindle 
organization. This study establishes potentially fruitful 
therapeutic avenues. Notably, specific genes, including 
ANP32E, VANGL2, BRCC3, and ANLN, have emerged 
as prognostic indicators fundamental to the pathogenesis 
of TNBC. The comprehensive analysis of the functions of 
BRCC3, an E3 ubiquitin ligase associated with heightened 
cell proliferation, ANP32E, which regulates histones, aids in 
cell adhesion, and promotes the proliferation of TNBC cells, 
and ANLN, which facilitates cytokinesis and encourages 
tumor cell proliferation, highlights the critical importance 
of these genes in the progression of TNBC and establishes 
them as prospective therapeutic targets. The results above 
offer significant contributions to our understanding of the 
intricate molecular terrain of TNBC, thereby facilitating 
the development of targeted therapeutics and precise 
interventions for this particularly aggressive subtype of 
breast cancer.
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