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Objective(s): Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases in 
people over 65. The present research aimed to investigate the potential of different dietary supplements 
(DS) in preventing AD in an experimental animal model and in silico study.
Materials and Methods: Three DS containing a mixture of wheat-germ oil and black pepper extract/or 
turmeric extract were prepared. Total phenolic content, HPLC-phenolic profile, phytosterols content, 
fatty-acids profile, and anti-oxidant activity were evaluated in all DS. The protective effect of the 
prepared DS was assessed through their impact on cholinergic neurotransmission and the gene 
expression of GSK3β, APP, and Akt. Oxidative stress and inflammatory markers were evaluated. The 
inhibition activities against acetylcholinesterase (AChE) and reduction of amyloid-β aggregation of 
the major phytochemicals present in the studied DS were evaluated using in silico molecular docking 
study.
Results: Molecular docking revealed that rosmarinic acid and β-Sitosterol exhibited the strongest 
binding affinities for AChE and Amyloid-β, respectively. The results showed that all DS reduced 
cholinergic neurotransmission, decreased TNF-α as an inflammatory marker, and improved oxidative 
stress status. All DS down-regulated the expression of GSK3β and APP while significantly up-
regulating the expression of the Akt gene.
Conclusion: The present study concluded that all DS enhanced cholinergic neurotransmission, 
reduced inflammation, and improved oxidative stress status by impacting the expression of GSK3β, 
Akt, and APP genes. Rosmarinic acid and β-sitosterol showed promising effects for treating AD, 
according to an in silico molecular docking study. The studied dietary supplements were considered 
promising candidates for the prevention of AD.
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Introduction
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Alzheimer’s disease (AD) is one of the most common 
neurodegenerative diseases that result in cognitive 
impairment, memory loss (dementia), and behavioral 
alterations in about 10% of people over 65 years of age, 
especially women (1). AD is responsible for 60% to 80% of 
dementia cases (2). In 2050, AD will affect 115.4 million 
people, and it is one of the most important reasons for death 
globally (3). Numerous hypotheses attempt to explain AD 
pathogenesis, such as the amyloid, cholinergic, and tau 
hypotheses. Additionally, other factors that play a role in AD 
diseases include oxidative stress, neuroinflammation, head 
injuries, vascular disease, genetic factors, and environmental 
factors (4-6).  

AD is characterized by amyloid plaques, neurofibrillary 
accumulation, cholinergic function impairment, and neural 
loss tangles in the AD patient’s brain (7). In AD, the main 
component of amyloid plaques is amyloid β protein (Aβ), 
which has been considered as the main initiating factor for 
AD pathological processes. Aβ is generated by sequential 
cleavages of amyloid precursor protein (APP) by β-secretase 

and γ-secretase. The imbalance between the synthesis 
of Aβ and clearance of Aβ leads to aggregation, protein 
misfolding, and extracellular accumulation, which finally 
results in amyloid plaque formation (8). The abnormal 
accumulation of Aβ and amyloid plaques in the cerebral 
cortex and hippocampus leads to neurotoxicity and causes 
synapse loss, axon damage, and cognitive impairments 
(9, 10). Aβ can affect cholinergic neurotransmission by 
reducing the release of the neurotransmitter acetylcholine, 
decreasing choline-acetyltransferase activity, and increasing 
acetylcholinesterase activity (AChE), which blocks signal 
transmission (11, 12). The interaction between AChE and 
Aβ can participate in the AD progression amplification (13). 

There are several approaches targeting signaling 
pathways that may give a potential therapeutic agent to 
slow the progression of AD. One therapeutic strategy that 
elevates neural cell function and cognitive function is 
increasing levels of cholinergic by AChE inhibitors (14). 
Moreover, developing a therapeutic compound targeting 
the Aβ pathway and modulating APP cleavage is another 
approach for AD treatment. One possible signaling pathway 

https://ijbms.mums.ac.ir/
https://dx.doi.org/10.22038/ijbms.2024.79960.17320
https://creativecommons.org/licenses/by-nc/4.0/legalcode.en


171Iran J Basic Med Sci, 2025, Vol. 28, No. 2

Dietary Supplements and Alzheimer’s disease Mohamed et al.

targeting the treatment of AD is the glycogen synthase 
kinase-3 (GSK3β) pathway (15). GSK3β plays a critical 
role in AD pathology; it is found to be highly expressed 
in the brains of AD patients. GSK3β activation in the 
brain of AD patients regulates APP cleavage and promotes 
Aβ accumulation, tau hyper-phosphorylation, neural 
dysfunction, and inflammatory molecule production (16). 
Hence, dietary supplements containing active compounds 
may play an important role as inhibitors for AChE and 
GSK3β. So, dietary supplements may be a promising agent 
for preventing and treating AD.

Plant phytochemicals exhibited many biological activities 
such as neuroprotective activity, anti-inflammatory, anti-
oxidant, anti-diabetic, and cardioprotective effects (17). 
Several plants and phytochemicals are recommended in 
traditional practices of medicine to boost cognitive function 
and to relieve AD symptoms such as decline of cognition, 
dementia, and depression. So, searching for new treatments 
for protection and curing AD from plant sources is an 
important era of research, as all available treatments for AD 
have limited effectiveness (18). Turmeric tubers (Curcuma 
longa L., Family Zingiberaceae) contain curcumin, a 
polyphenolic yellow substance represented by more than 
60% of the active compounds of turmeric (19). Turmeric 
is among the most widely consumed dietary supplements 
globally (20). Numerous studies have been conducted on 
curcumin, a compound that exhibits a diverse range of effects, 
including anti-inflammatory, anti-oxidant, and anticancer 
properties (21). Zhang et al. (22) reported that turmeric (5 
mg/day) improves neurocognitive functions of AD disease 
and reduces amyloid plaque and tau phosphorylation. 
Black pepper (Piper nigrum L., Family Piperacea) is used 
in traditional medicine due to its active compounds such 
as piperidine, α-pinene, and β-pinene (23). Black pepper 
possesses many medicinal properties such as anti-oxidant, 
anti-inflammatory, anticancer, and anti-atherosclerotic (24-
26). In a sporadic AD mouse model, Piperine (2.5-10 mg/
kg body weight) reduced cognitive impairment through 
neurotransmission restoration, neuroinflammation 
reduction, and oxidative stress amelioration  (27). Wheat 
germ oil is a rich source of unsaturated fatty acids, 
tocopherols, policosanol, and phytosterols (28-30). Feltre 
et al. (28) reported that tocopherols showed several health 
benefits, such as anti-oxidant activity, retarded aging, 
delayed progression of degenerative disease, and improved 
dyslipidemia. Previous studies reported the therapeutic 
activities of wheat germ oil, such as anti-inflammatory, 
cardio-protective, hypolipidemic, and anti-oxidant (29-31).

For several decades, herbs and spices have been used as 
alternative therapy for many chronic diseases. To improve 
these therapeutic effects, multiple herb combinations can 
be used to enhance and optimize the synergistic effect of 
their different phytochemicals. So, the present research 
was a trial for optimizing the utility of dietary supplements 
containing a  mixture of wheat germ oil and black pepper 
ethanol extract/or turmeric ethanol extract. Most previous 
studies included only one of these plants used in the present 
research. Thus, the present research aims to prepare dietary 
supplements and evaluate their impact on cholinergic 
neurotransmission, GSK3, APP, and Akt gene expression, 
oxidative stress, and inflammatory markers in a  model of 
AD induced in rats. Also, a  molecular docking study was 
applied to some phytochemicals in the dietary supplements 
to study their impact on AChE and Aβ.

Materials and Methods 
Materials
Plant materials and chemicals

Turmeric root (Curcuma longa), black pepper seeds 
(Piper nigrum), and wheat germ were purchased from local 
markets in Giza, Egypt. The chemicals and pure reagents 
were procured from Sigma Chemical Companies (Sigma-
Aldrich, St. Louis, MO, USA). 

Animals and diets
Male rats of Sprague Dawley with a mean body weight 

of 218.4 g were used in the current investigation. Animals 
were purchased from the National Research Centre Animal 
House. During the study, the animals were given clean 
water and fed a balanced diet, as described previously by 
Mohamed et al. (32) ad libitum throughout the duration of 
the experiment. All animals were housed individually in 
cages. The animal procedures were done according to our 
institutional research and ethics committee and in line with 
the ethical guidelines for animal care and use for scientific 
purposes developed by the National Research Centre, Egypt 
(19176).

Methods
Preparation of wheat germ oil, crude ethanol extract of 
black pepper, and turmeric 

Wheat germ oil was extracted by n-hexane according 
to the method previously described by Mohamed et al. 
(33). After evaporation of the solvent, wheat germ oil 
was frozen until use. To prepare crude ethanol extract, 
the air-dried powdered turmeric root and black pepper 
seeds were successively extracted separately with ethanol 
in the  Soxhlet apparatus until exhausted. The solvent was 
totally eliminated through evaporation under vacuum, 
maintaining a temperature below 40 °C. The crude extract of 
turmeric root and the crude ethanol extract of black pepper 
were stored in deep-freeze until utilized.  

Preparation of dietary supplements 
Three dietary supplements (I, II, and III) were 

formulated. The dietary supplement I consisted of a mixture 
of black pepper crude ethanol extract and wheat germ oil 
in a 1:1 ratio. Dietary supplement II consisted of a 1:1 ratio 
of crude ethanol extract of turmeric and wheat germ oil. In 
contrast, dietary supplement III was composed of a 1:1:1 
ratio mixture of crude ethanol extract of black pepper, crude 
ethanol extract of turmeric, and wheat germ oil. All dietary 
supplements were prepared as oil-in-water emulsions, with 
Tween 80 serving as the surfactant. First, the surfactant was 
dispersed in each oil phase separately using mechanical 
steering for 20 min. Then, each oil-surfactant mixture was 
added drop-wise to the aqueous phase (distilled water)  to 
spontaneously form a coarse milky white emulsion. The three 
dietary supplements emulsions were further homogenized 
to reduce the particle size of the dispersed oil droplets by 
using a high-speed rotor-stator homogenizer (WiseTis HG-
15D, Wise Laboratory instruments, Korea) at 5000 rpm for 
5 min. The emulsions were stored at a temperature of 4 °C 
for one week throughout the duration of the experiment.

Extraction and determination of total phenolic compounds 
in the prepared dietary supplements

The extraction of phenolic compounds from the prepared 
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dietary supplements was conducted using a mixture 
consisting of methanol (80%) and hexane (30). The content 
of total phenolic compounds in dietary supplements was 
measured using the Folin-Ciocalteu method (34), and the 
absorbance was measured by a spectrophotometer at 765 
nm. The total phenolic content was reported as gallic acid 
equivalents (GAE) in mg/g of extract. 

High-performance liquid chromatography (HPLC) 
analysis of phenolic compounds profile of the prepared 
dietary supplements

Phenolic compounds extracted from the prepared 
dietary supplements (100 mg) were dissolved in 1 ml 
methanol (HPLC grade) and filtrated through a 0.2 μm 
filter sterilized membrane before the injection. Samples 
were determined in triplicate. HPLC analysis was carried 
out using an Agilent 1260 series. The separation was carried 
out using the  Zorbax Eclipse Plus C18 column (4.6 mm 
x250 mm i.d., 5 μm). The mobile phase consisted of water 
(A) and 0.05% trifluoroacetic acid in acetonitrile (B) at a 
flow rate of 0.9 ml/min. The mobile phase was programmed 
consecutively in a linear gradient as follows: 0 min (82% 
A); 0–1 min (82% A); 1-11 min (75% A); 11-18 min (60% 
A); 18-24 min (82% A). The multi-wavelength detector was 
monitored at 280 nm. The injection volume was 5 μl from 
each sample solution in the Agilent HPLC, and the column 
temperature was maintained at 40 °C. Retention times of the 
identified compounds were recorded. The concentration of 
each compound in the samples was estimated by comparing 
the peak area of the samples with the relative standards. The 
standards used were gallic acid, chlorogenic acid, catechin, 
methyl gallate, coffeic acid, syringic acid, pyrocatechol, rutin, 
coumaric acid, vanillin, ferulic acid, naringenin, rosmarinic 
acid, daidzein, querectin, cinnamic acid, kaempferol and 
hesperetin.    

Determination of the anti-oxidant activity of the prepared 
dietary supplements

The DPPH (2,2-diphenyl-1-picrylhydrazyl) assay (35) 
was used to measure the anti-oxidant activity of all dietary 
supplements. The following equation was used to determine 
the percent DPPH scavenging effect: The percent of DPPH 
scavenging effect=(A0-A1/A0)×100. Where  A0 is the 
control absorbance, A1 is the  standard, and test samples 
absorbance.  

Determination of fatty acids and phytosterols in the 
prepared dietary supplements

GLC analysis of fatty acid profiles and phytosterols 
was performed on the prepared dietary supplements fatty 
acid methyl esters and phytosterols, which were prepared 
according to AOAC (30, 36) procedures. The same conditions 
used by Mohamed et al. (37) were applied to identify and 
evaluate methyl ester fatty acids and phytosterols.

Molecular docking of bioactive compounds of the prepared 
dietary supplements 

A set of the major phytochemicals present and 
determined in the prepared dietary supplements were 
retrieved from the PubChem database (38). The retrieved 
compounds were minimized using the Avogadro molecular 
modeling software (version 1.2.0) and the MMFF94 force 
field (39). The target proteins, acetylcholinesterase (AChE; 

UniProt ID: P22303) and amyloid-β (UniProt ID: P05067) 
were retrieved from the UniProt database (40). The protein 
structures were prepared using AutoDock Tools 1.5.7 
(41), including adding hydrogen atoms, removing water 
molecules, and assignment of partial charges. Molecular 
docking was performed using AutoDock Vina (42). The 
prepared phytochemicals and proteins were used as inputs 
for the docking process. The docking results were visualized 
using the BIOVIA software, version 2020 (43). 

Experimental model of Alzheimer’s disease 
After a week of adaptation, the animals were divided 

into five groups (n=6 each). Group one was the control 
group, which received the standard diet. The rats in group 
two were administered daily intraperitoneal injections of 
150 mg/kg body weight of D-galactose and 10 mg/kg body 
weight of AlCl3 to induce AD in rats, following the protocol 
described by Bilgic et al. (44) and Mohamed et al. (32).  Rats 
from groups three, four, and five were subjected to daily 
intraperitoneal injections of an identical D-galactose and 
aluminum chloride dose. Additionally, they were orally 
administered dietary supplements I, II, and III at 200 mg/kg 
of body weight per day. All rats were fed a balanced diet for 
the duration of the experiment, which lasted three weeks. 
Weekly weight and food intake records were also taken. A 
feed efficiency ratio, body weight gain, and total food intake 
were estimated at the end of the study. Following overnight 
fasting, the rats were subjected to anesthesia via peritoneal 
injection of 6.6 mg/kg of Ketamine and 0.3 mg/kg of Xylazine. 
Blood samples were collected. Plasma was detached from 
all blood samples for estimation of butyrylcholinesterase 
(BuChE)(45) and acetylcholinesterase (AChE)(SUNLOG, 
Cat No. SL002Ra, ELISA kit). Brain samples were dissected 
to determine markers of oxidative stress and inflammation, 
as well as to conduct gene expression analysis after the 
decapitation of animals.

Determination of inflammatory and oxidative stress 
markers in rat brain homogenate

The brains of the rats were collected, rinsed in cold saline, 
and then homogenized in phosphate buffer with a pH of 7.4. 
The homogenates were centrifuged for 10 min at 4 °C and 
4000 rpm. The supernatant was utilized to assess catalase 
activity (46), malondialdehyde (MDA) levels (47), and 
glutathione peroxidase (GPx) activity (SUNLOG, Cat No. 
SL1033Ra, ELISA kit) as indicators of oxidative stress. The 
inflammatory marker, tumor necrosis factor-α (TNF-α), was 
assessed using the SUNLOG ELISA kit (Cat No.SL0722Ra).

Hippocampal gene expression of GSK3, APP, and Akt of 
different experimental groups

The extraction of total RNA from the hippocampus tissue 
of rats was performed using the PureLink® RNA Mini Kit 
(ambion® Life technologies TM) following the instructions 
provided by the manufacturer. The concentrations 
and purity of RNA were assessed using a NanoDrop 
spectrophotometer. The complementary DNA (cDNA) 
was generated using 1.5 µg of total RNA in a 20 µl reaction 
utilizing the RevertAid first strand cDNA synthesis kit 
(Thermo Fisher® invitrogenTM), following the instructions 
provided by the manufacturer. 

RT-PCR was carried out using a Rotor-Gene® MDx 
instrument. The RT-PCR reaction mixture consisted of a 25 
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µl volume. It comprised 1.0 µl of template complementary 
DNA (cDNA), 1× concentration of the EvaGreen® PCR 
master mix (HOT FIREPol® EvaGreen® qPCR Mix Plus, 
Solis BioDyneTM), and 0.2 µM concentration of the primer 
pairs. The primer pairs sequences utilized for the analysis 
of gene expression in glycogen synthase kinase-3 (GSK-3), 
amyloid precursor protein (APP), and serine/threonine 
protein kinase B (Akt) are provided in Table 1. 

The experimental protocol was as follows: 50 °C for 2 
min, then 95 °C for 10 min, 45 cycles of 20 sec at 95 °C, 30 sec 
at 56/60 °C, and 30 sec at 72 °C. Additionally, a melting curve 
program was employed, spanning a temperature range 
of 60-95 °C. The relative expressions of the target genes 
were calculated using the 2-∆∆CT method, as described 
by Livak and Schmitting (48). The expression levels of the 
target genes were normalized to the expression levels of the 
housekeeping gene GAPDH.

Statistical analysis 
The SPSS statistical program was used to analyze the data 

using one-way ANOVA and the Tukey multiple comparison 
test. Statistical significance was determined at a significance 
level of P≤0.05.   

 
Results 
Total phenolic compounds and anti-oxidant activity of the 
prepared dietary supplements

Figure 1A shows that total phenolic content in dietary 
supplements I, II, and III was present at 112.7, 119.6, and 
120.8 mg GAE/g dietary supplements. Dietary supplement 
III exhibited the highest level of phenolic compounds, 
followed by dietary supplement II. Dietary supplement I 
exhibited the lowest level of total phenolic compounds. 
The anti-oxidant activity of dietary supplements I, II, 
and III was determined using DPPH radical (Figure 1B). 
Dietary supplement III exhibited the highest activity in 
scavenging DPPH radicals, followed by dietary supplement 
II in all the concentrations studied (50, 100, 150, 200, and 
250 µg/ml). 

HPLC phenolic profile of the prepared dietary supplements
Phenolic compound profiles of the studied dietary 

supplements are presented in Table 2. The results of HPLC 
analysis of the studied dietary supplements revealed the 
presence of 16 phenolic compounds in dietary supplement 
I. However, 17 phenolic compounds were identified in 

dietary supplement II and 18 in dietary supplement III.  
Kaempferol was the major identified compound in dietary 
supplement II (8311.96 µg/g) and dietary supplement III 
(4160.4 µg/g), while ellagic acid was the major compound 
in dietary supplement I. Querectin (4 µg/g) was the minor 
compound identified in the dietary supplement I. Coumaric 
acid (8.2 µg/g) was the minor compound identified in the 
dietary supplement II, while rutin (4.9 µg/g) was the minor 
compound identified in the dietary supplement III. 

Fatty acids profile and phytosterols of the studied dietary 
supplement

Table 3 shows the prepared dietary supplements’ fatty acid 
profile and phytosterol content. In the present study, wheat 
germ oil was the main source of fat in all the prepared dietary 

Table 1. Primers sequence used for real-time PCR analysis of gene expression of GSK3, APP, and Akt
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and free radical scavenger activity
A: total phenolic as mg GAE/g; B: anti-oxidant activity. The same letter means non-
significant difference, while a different letter means significant difference at 0.05 
probabilities. The data are expressed as mean values±standard error
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Ref. Annealing temperature Sequences Target genes 

This study 60 °C 
FW (5′-CGGGACCCAAATGTCAAAC-3′) 

RW(5′-CGTGACCAGTGTTGCTGAG-3′) 
GSK3 

[49] 56 °C 
FW (5′-ACCCATCAGGGACCAAAACC-3') 

RW(5′-GGCATCGCTTACAAACTCACC-3') 
APP 

[50] 60 °C 
FW (5′-ACTCATTCCAGACCCACGAC-3′) 

RW(5′- CCGGTACACCACGTTCTT-3′) 
Akt 

[51] 60 °C 
FW (5′- GTATCGGACGCCTGGTTACC-3′) 

RW(5′- CGCTCCTGGAAGATGGTGATGG-3′) 
GAPDH 
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supplements. So, all the investigated dietary supplements’ 
fatty acids profile and phytosterols content were identical. 
In the present study, the fatty acids profile of the prepared 
dietary supplements showed that linoleic acid (C 18:2, ω 6) 
was the highest unsaturated fatty acid present in wheat germ 
oil (54.4%), followed by oleic acid (C 18:1)(15.5%). Pllamitic 
acid (C 16:0)(16.2%) was the highest saturated fatty acid in 
the prepared dietary supplements. Total saturated fatty acids 

were present by 16.74%, while total unsaturated fatty acids 
were present by 70%. Total phytosterols were present in the 
prepared dietary supplements by 3.84%. β-Sitosterol (2.9%) 
was the major phytosterol present in the prepared dietary 
supplements followed by campesterol (0.64%). Stigmasterol 
(0.3%) was the lowest phytosterol present in the prepared 
dietary supplements. 

In silico molecular docking of bioactive compounds of the 
prepared dietary supplements 

Table 4 presented the binding affinities (ΔG in kcal/mol) 
of selected phytochemicals determined in the prepared 

Table 2. Phenolic compounds levels (µg/g) in the all prepared dietary supplements

 

2 

 

 
 

Phenolic compounds Dietary supplements I Dietary supplements II Dietary supplements III 

Gallic acid 55.2±0.046 127.91±0.081 91.6±0.060 

Chlorogenic acid 16.4±0.070 53.51±0.085 34.9±0.055 

Catechin - 27.3±0.065 13.59±0.035 

Methyl gallate 93.59±0.060 16.1±0.061 54.8±0.050 

Coffeic acid 43.84±0.056 54.5±0.060 49.2±0.056 

Syringic acid 67.2±0.035 79.4±0.081 73.3±0.066 

Rutin 9.79±0.075 - 4.89±0.055 

Ellagic acid 315.5±0.066 14.8±0.031 165.11±0.046 

Coumaric acid 8.2±0.042 351.9±0.055 180.11±0.051 

Vanillin 46.4±0.055 553.2±0.057 299.82±0.053 

Ferulic acid - 523.8±0.070 261.89±0.046 

Naringenin 10.0±0.051 14.2±0.046 12.16±0.051 

Rosmarinic acid 129.66±0.0115 132.7±0.061 131.2±0.047 

Daidzein 21.49±0.066 121.5±0.055 71.5±0.061 

Querectin 280.29±0.060 4.05±0.050 142.1±0.057 

Cinnamic acid 9.39±0.055 91.6±0.070 50.51±0.066 

Kaempferol 8.74±0.056 8312±0.080 4160.4±0.065 

Hesperetin 10.78±0.044 598.08±0.076 304.4±0.055 
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Fatty acids Dietary supplements 

Fatty acids as percentage of total fatty acids 

Palmitic C16:0 16.25±0.003 

Stearic C18:0 0.57±0.03 

Oleic, C18:1 15.77±0.252 

Linoleic, C18:2 54.97±0.551 

-Linolenic, C18:3 6.67±0.416 

Total identified saturated fatty acids 16.82±0.080 

Total identified unsaturated fatty acids 77.4±1.153 

Phytosterols (as percentage of total phytosterols) 

Campesterol 0.687±0.042 

Stigmasterol 0.343±0.040 

-Sitosterol 3.067±0.153 

Total phytosterols 4.097±0.224 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3. Fatty acids and phytosterols levels in the all prepared dietary 
supplements
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Compounds 
 

AChE Amyloid-  

Curcumin -9.3 -7.7 

Ellagic acid -9.4 -8.0 

Hesperetin -8.5 -7.7 

Kaempferol -9.2 -7.6 

Piperine -10.3 -7.4 

Quercetin -9.7 -7.6 

Rosmarinic -10.5 -7.4 

Linoleic -6.6 -5.2 

Oleic acid -6.8 -4.5 

 -9.3 -8.4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4. Binding affinity for docking experiment of phytochemicals with 
AChE and Amyloid-β
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dietary supplements against the acetylcholinesterase (AChE) 
and amyloid-β (Aβ). The data revealed that rosmarinic and 
piperine exhibited the strongest binding affinities for AChE, 
while β-sitosterol showed the highest binding affinity for 
Amyloid-β. Several compounds, including ellagic acid, 
quercetin, curcumin, kaempferol, and hesperetin, display 
relatively high binding affinities for both AChE and 
Amyloid-β, suggesting their potential as dual-targeting 
agents for the treatment of neurodegenerative diseases like 
Alzheimer’s. The overall results highlight the promising 
therapeutic potential of these phytochemicals against AD. 
Rosmarinic acid and β-sitosterol showed the strongest 
binding affinities for AChE and Amyloid-β, respectively, 
among all phytochemicals measured in the prepared dietary 
supplements.

Table 5 provides the binding interactions between the 
phytochemical rosmarinic with the acetylcholinesterase 
(AChE) enzyme and the binding interactions between the 
phytochemical β-Sitosterol and the Amyloid-β protein. 
Rosmarinic exhibits a complex binding mode with AChE, 
as evidenced by the multiple hydrogen bond interactions 
with key amino acid residues, including ARG296, PHE295, 
TRP286, and TYR72. These hydrogen bonds likely 
contribute to the strong binding affinity of rosmarinic to 
the AChE active site. Additionally, rosmarinic engaged in 
favorable pi-pi stacking and T-shaped interactions with 
aromatic amino acid residues such as LEU289, TYR341, and 
TRP286, further stabilizing the ligand-enzyme complex. 

β-Sitosterol exhibited a hydrophobic binding mode with 
the Aβ protein, primarily engaging in alkyl and pi-alkyl 
interactions with several amino acid residues. These include 
MET458, HIS457, VAL454, PHE391, HIS388, and TYR217. 
The predominance of these hydrophobic interactions 
suggests that β-Sitosterol is well-accommodated within the 
hydrophobic pockets of the Aβ protein structure, potentially 
contributing to its high binding affinity. The unique binding 
modes and the involvement of different amino acid residues 

highlight the distinct binding characteristics of rosmarinic 
and β-Sitosterol, which may be crucial for their respective 
efficacies in modulating AChE activity and Aβ protein, 
respectively, and potentially impacting the treatment of AD. 

Impact of dietary supplement administration on 
cholinergic neurotransmission 

The biochemical changes that occurred in the  plasma 
and brain tissue of the numerous experimental groups are 
shown in Figure 2. Plasma levels of acetylcholinesterase 
and butrylcholinesterase showed significant elevation in 

Table 5. 3D and 2D for Rosmarinic with AChE and β-Sitosterol with Amyloid-β 

* Rosmarinic exhibits the strongest binding affinities for AChE  among all phytochemicals measured in the prepared dietary supplements; β-Sitosterol exhibits the strongest 
binding affinities for Amyloid-β among all phytochemicals measured in the prepared dietary supplements
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Figure 2. Effect of dietary supplement administration on plasma 
acetylcholinesterase (AChE)  and butrylcholinesterase (BuChE) compared 
with normal and AD rats
The same letter means non-significant difference, while a different letter means 
significant difference at 0.05 probabilities. The data are expressed as mean values ± 
standard error
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the rats’ group of Alzheimer’s disease in comparison to 
the normal control group. Oral administration of different 
dietary supplements during injection with D-galactose 
and aluminum chloride reduced the elevation in plasma 
levels of acetylcholinesterase and butrylcholinesterase 
significantly compared with the rats’ group of Alzheimer’s 
disease. Dietary supplements II and III return plasma levels 
of butrylcholinesterase to normal levels, while dietary 
supplement III returns plasma levels of acetylcholinesterase. 
Rise in acetylcholinesterase, accompanied by an injection of 
D-galactose and aluminum chloride, is a valued marker of 
the rat model for AD. The present results indicated that the 
studied dietary supplements were very effective in improving 
the nervous system enzymes, which elevated significantly 
due to the injection of D-galactose and aluminum chloride. 

Impact of dietary supplement administration on 
inflammatory and oxidative stress markers in rats’ brain 

Oxidative stress parameters of brain tissue of different 
experimental groups are illustrated in Table 6. Anti-oxidant 
enzymes catalase and glutathione peroxidase were reduced 
significantly in rats with AD. Rats given a daily oral dose 
of different dietary supplements showed significant catalase 
and glutathione peroxidase elevations  as indicators of 
anti-oxidant status. Dietary supplement III was the most 
promising one. Malondialdehyde (MDA) as an indicator of 
lipid peroxidation in the brain tissue showed a significant 
increase in rats’ group of Alzheimer’s disease compared 
with all groups. The reduction of anti-oxidant enzymes 
and the elevation of MDA are indicators of the elevation of 
oxidative stress in rats with AD. Tumor necrosis factor-α 
as an inflammatory marker showed a significant elevation 

in the  rats’ group of Alzheimer’s disease in comparison 
with all studied groups. All rats administered with dietary 
supplements I, II, or III indicate a significant reduction 
in TNF-α as an inflammatory marker and MDA as a lipid 
peroxidation marker associated with elevated anti-oxidant 
enzymes (catalase and glutathione peroxidase) to different 
degrees.

Table 7 presents the nutritional parameters investigated 
in the numerous experimental groups. The group of rats 
with AD exhibited a significant decrease in body weight 
gain and food intake compared to the group of normal rats. 
The administration of all  dietary supplements resulted in 
enhanced body weight gain and food intake in the group of 
rats with Alzheimer’s disease.  

Impact of dietary supplement administration on 
hippocampal gene expression of GSK3β, APP, and Akt

GSK3β, APP, and Akt gene expression were detected 
using real-time-PCR in hippocampal tissue (Figure 3). 
The mRNA levels of GSK3β and APP were significantly 
increased in the  Alzheimer’s disease rats group compared 
with normal rats. Treatments with dietary supplements I, II, 
or III significantly down-regulated the expression of GSK3β 
(Figure 3A) by 93%, 90%, and 80%, respectively. Dietary 
supplements I, II, and III significantly down-regulated APP 
expression by 78%, 69%, and 65%, respectively (Figure 3B). 
Akt gene expression (Figure 3C) was significantly reduced 
in the Alzheimer’s disease rats group compared with normal 
rats. However, the gene expression of Akt was significantly 
up-regulated by treatments with dietary supplement 
I, dietary supplement II, and dietary supplement III, 
respectively. 

Table 6. Effect of the prepared dietary supplements on the inflammatory and oxidative stress markers in brain tissue of the AD rats
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Parameters Normal control  Dietary supplement I Dietary supplement II Dietary supplement III 

Oxidative stress markers 

Catalase (U/g) 0.768a±0.041 0.53b ±0.015 0.582b±0.032 0.609b±0.013 0.612b±0.017 

Gpx (U/mg) 43.5a±0.294 30.28b±0.553 35.19c±0.942 37.54d ±0.64 40.43e±0.473 

MDA (nmol/g tissue) 9.93a±0.219 24.19b±0.259 17.29c±1.34 11.81a±0.44 10.58a±0.345 

Inflammatory marker 

TNF-  19.92a±0.305 36.69b±0.656 24.1c±1.06 21.07a±0.553 20.05a±0.297 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In each raw, the same letter means non-significant difference, while a different letter means significant difference at 0.05 probabilities. The data are expressed 
as mean values±standard error

Table 7. Effect of the prepared dietary supplements on the nutritional parameters in AD rats

Similar letters mean non-significant differences within groups (P≤0.05) in the same raw
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Parameters Normal control  Dietary supplement I Dietary supplement II Dietary supplement III 

Initial body weight (g) 218.5a±4.39 218.3a±2.23 218.3a±5.95 218.3a±5.26 218.3a±7.46 

Final body weight (g) 251.3a±2.85 235.3a±4.14 241.7a±6.07 241.2a±4.72 243.8a±6.084 

Body weight gain (g) 32.8a±5.62 17.0b±3.38 23.3ab±3.30 22.8ab±2.39 25.5ab±3.02 

Total food intake (g) 347.17a±3.33 339.67b±4.81 351.3ac±2.20 346.3a±5.63 349.75a±6.88 

Feed efficiency ratio 0.094a±0.015 0.052a±0.011 0.067a±0.009 0.065a±0.006 0.074a±0.008 

Relative brain weight 0.518a±0.047 0.585a±0.039 0.564a±0.033 0.547a±0.027 0.504a±0.023 
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Discussion
AD is a neurogenerative disorder characterized by 

intraneuronal neurofibrillary tangles, extracellular 
amyloid plaques, synaptic loss, oxidative stress, neuropil 
threads, and neural loss (6). Several hypotheses attempt 
to describe AD pathogenesis, such as amyloid hypothesis, 
cholinergic hypothesis, tau hypothesis, oxidative stress, and 
neuroinflammation (4-6). Appropriate animal models are 
an important strategy to understand AD pathophysiology at 
the cellular, molecular, and behavioral levels and to develop 
new therapeutic agents. Aluminum exhibits a neuro/
cholinotoxin-like effect that affects neuronal structure 
(52), permeability of the blood-brain barrier (BBB), and 
cholinergic/noradrenergic neurotransmission (53, 54). The 
BBB is altered by aluminum chloride exposure, which also 
affects axonal transports, causes inflammatory reactions, 
abnormal synaptic structural changes, and profound 
memory loss (54). The potential neurotoxicity effect of 
aluminum was also confirmed on experimental animal 
models (55-57, 32), demonstrating that chronic exposure to 
aluminum ions results in neurologic symptoms resembling 
progressive neurodegeneration in the spinal cord, cerebral 
cortex, and hippocampus (32, 54).  It was reported previously 
that a combination of AlCl3 and Dgalactose was effective 
as an animal model, which induces different pathological 
changes mimicking AD in humans, such as neuronal loss, 
dementia, and elevated acetylcholinesterase activity (32, 
58). The current study explored the influences of three 
prepared dietary supplements on cholinergic function and 
amyloid-β through evaluation of their impact on cholinergic 
neurotransmission (AChE and BuChE), gene expression of 
GSK3β, APP, and Akt, oxidative stress and inflammatory 
markers in Alzheimer’s disease rats’ models induced by 
injection of D-galactose and aluminum chloride as well as 
an in silico molecular docking study.  

Phytochemicals from plants are considered a good 

strategy for protecting and/or treating AD as they play an 
important role as complementary or alternative therapies 
for AD. Plants’ phytochemicals proved anti-oxidant and 
anti-inflammatory activities and exhibited therapeutic 
impact on neurodegeneration disorders (59).  In the 
present study, three dietary supplements were prepared and 
evaluated to prevent AD in rat models. Dietary supplement 
I contains crude ethanol extract of black pepper and wheat 
germ oil (a ratio of 1:1), and dietary supplement II contains 
crude ethanol extract of turmeric and wheat germ oil (a 
ratio of 1:1). In contrast, dietary supplement III contains 
crude ethanol extract of turmeric, crude ethanol extract of 
black pepper and wheat germ oil in a ratio 1:1:1. in silico 
molecular docking study of the main bioactive compounds 
of the three prepared dietary supplements in the current 
research revealed that rosmarinic, piperine, quercetin and 
curcumin exhibited the strongest binding affinities for 
AChE. These high binding affinities can be attributed to the 
ability of these phytochemicals to form multiple hydrogen 
bonds and favorable pi-stacking interactions within the 
AChE active site. β-Sitosterol showed the highest binding 
affinity for amyloid-β. The strong binding of β-Sitosterol 
can be attributed to its ability to engage in alkyl and pi-
alkyl interactions  with the hydrophobic pockets within 
the  amyloid-β structure. Hydrogen bonding, pi-stacking, 
and hydrophobic interactions are crucial for binding, 
specifically for optimizing binding affinity and enhancing 
the stability of drug-protein complexes (60). The distinct 
binding modes and the involvement of different types of 
interactions, such as hydrogen bonding, pi-stacking, and 
hydrophobic interactions, highlight the unique molecular 
recognition mechanisms of currently studied compounds 
in the three dietary supplements, which may be crucial for 
their respective efficacies in modulating the activities of 
AChE and amyloid-β, ultimately impacting the treatment 
of AD.

The results revealed that all the studied dietary supplements 
effectively reduced the elevation of acetylcholinesterase and 
butrylcholinesterase in plasma, following reduced oxidative 
stress and inflammation markers in the brain tissues. The 
protective effect of the studied dietary supplements may be 
attributed to the presence of phenolic compounds. Likewise, 
it may be attributed to the presence of polyunsaturated 
fatty acids and phytosterols. In the current research, the 
prepared dietary supplements contain crude ethanol extract 
from turmeric and/or crude ethanol extract from black 
pepper and wheat germ oil. It was reported previously 
that curcumin (60% of the active compounds of turmeric) 
is the major polyphenol compound present in turmeric 
(19). The curcumin structure includes reactive functional 
groups, such as diketone and phenol, crucial in scavenging 
reactive oxygen species (ROS) and working like anti-
oxidant enzymes (61). Previously, curcumin was shown to 
have neuroprotection activity in AD models in rats (62-64). 
Black pepper possesses many medicinal activities such as 
anti-inflammatory, anti-oxidant, and anti-atherosclerotic 
(25-27) due to the presence of phytochemical compounds 
such as piperidine, α-pinene, and β-pinene (23). Piperine 
proved to have  anti-inflammatory activity in rat models 
of carrageenan-induced rat paw edema and a croton oil-
induced granuloma pouch (65). Ethanol extract from black 
pepper showed marked decreased cholinesterase levels 
and amyloidal plaque formation in rat brains (66, 67). 
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Figure 3. Effect of the prepared dietary supplements on the relative gene 
expression of GSK3β, APP, and Akt in the hippocampus of AD rats
The mRNA expression of GSK3, APP, and AKT is normalized with the housekeeping 
gene (GAPDH); values are represented as Mean±SE, calculated as fold-change from 
AD control. The same letter in each column is not significantly different; different 
letters are significantly different at 0.05 probability levels
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Rosmarinic acid, present in the three dietary supplements, 
showed high and strong binding affinities for AChE and 
amyloid-β, as approved in our research by the molecular 
docking in silico study. Yamamoto et al. (68) reported that 
rosmarinic acid reduced inflammation in rats’ brains and 
suppressed tau’s phosphorylation via a  down-regulating 
JNK signaling pathway. Also, rosmarinic acid suppresses the 
accumulation of amyloid-β in mice (69).  

Wheat germ oil was used in combination with turmeric 
extract and crude ethanol extract of black pepper to enhance 
the bioavailability of phytochemicals present in turmeric and 
black pepper, especially curcumin and piperine. Curcumin 
and piperine are lipophilic compounds, so adding wheat 
germ oil enhances their activities to cross the blood-
brain barrier, inhibit lipid peroxidation, and elevate their 
activities as anti-oxidants (70,71). Wheat germ-oil is one of 
the richest sources of phytosterols (especially β-Sitosterol) 
and tocopherols. According to an in vivo study, β-Sitosterol 
exhibited an inhibition effect on enzymes involved in 
cholinesterase’s metabolism and acted as a  free radical 
scavenger (72). β-Sitosterol revealed the strongest binding 
affinities for amyloid-β in our study. Hence, combining 
wheat germ oil with turmeric and/or black pepper crude 
ethanol extracts elevates their activities as anti-oxidants, 
anti-inflammatory, and in treating neurodegeneration (28-
30, 33). 

Glycogen synthase kinase 3β (GSK3 β) is a Serine/
Threonine protein kinase that has garnered significant 
interest due to its involvement in numerous pathways. 
GSK3β is constitutively active and abundantly expressed 
in the central nervous system (16). It has been suggested 
that GSK3β serves as a molecular bridge between tau and 
amyloid-β in the pathogenesis of AD. Amyloid-β activates 
GSK3β, which in turn phosphorylates tau (73). There has 
been a proposition indicating that GSK-3 may play a pivotal 
role in the process of epileptogenesis in AD through its 
interaction with the pathological features of AD, namely 
amyloid precursor protein (APP) and tau (74). In contrast, 
GSK3β plays a role in regulating APP metabolism and Aβ 
production and in promoting neuronal death triggered by 
Aβ (75, 76). Aβ and its precursor protein are considered 
the keystone of the pathogenesis of Alzheimer`s disease 
(77). Postmortem brains from AD patients had higher 
GSK3β levels than age-matched control samples (53,73). 
GSK3β activation has been demonstrated to promote the 
production of inflammatory markers such as TNF-α, IL-
1, and IL-6 (78), as shown in the present study. GSK3β has 
been regarded as a crucial target in treating AD due to its 
high specificity in substrate recognition (79). Akt negatively 
regulates GSK3β activity, protecting cells against the effect 
of GSK3β (51). In the current study, dietary supplement-I, 
dietary supplement-II, and dietary supplement-III 
decreased the expression of GSK3β and APP and increased 
the expression of Akt, which resulted in a decrease in 
neurotoxicity (promoting neuronal survival or enhanced 
Alzheimer’s status). Thus, the modulation of the GSK3β /
APP signaling pathway and Akt/GSK3β signaling pathway 
by natural dietary supplements is a promising target for an 
Alzheimer’s therapeutic approach. 

Conclusion
The studied dietary supplements were considered 

promising  for AD prevention. Dietary supplement III 

(mixture of crude ethanol extract of turmeric, crude ethanol 
extract of black pepper, and wheat germ oil) was the most 
promising in preventing oxidative stress and inflammation 
parameters. Molecular docking revealed that rosmarinic 
acid has the strongest binding affinities for AChE, while 
β-sitosterol was the most promising in preventing A-β 
aggregation. All dietary supplements enhanced cholinergic 
function and significantly down-regulated the expression 
of GSK3β and APP while significantly up-regulated the 
Akt gene expression. All dietary supplements may impact 
the existence of polyunsaturated fatty acids, phytosterols, 
phenolic compounds, and their anti-oxidant activity against 
free radicals. The most important finding in the present study 
was the positive synergistic effect of mixing wheat germ oil 
with crude ethanol extract of turmeric and/or crude ethanol 
extract of black pepper in the form of dietary supplements, 
which have potential activity on the prevention of AD. 
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