- De Virgilio, A., Greco, A., Fabbrini, G., Inghilleri, M., Rizzo, M.I., Gallo, A., Conte, M., Rosato, C., Appiani, M.C. and de Vincentiis, M., 2016. Corrigendum to" Parkinson's disease: Autoimmunity and neuroinflammation"[Autoimmun Rev 15 (10)(2016) 1005-1011]. Autoimmunity reviews, 15(12), p.1210.
- Ferrazzoli, D., Ortelli, P., Madeo, G., Giladi, N., Petzinger, G.M. and Frazzitta, G., 2018. Basal ganglia and beyond: The interplay between motor and cognitive aspects in Parkinson’s disease rehabilitation. Neuroscience & Biobehavioral Reviews, 90, pp.294-308.
- Lu, B., Nagappan, G., Guan, X., Nathan, P.J. and Wren, P., 2013. BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nature Reviews Neuroscience, 14(6), pp.401-416.
- Westfall, S., Lomis, N., Kahouli, I., Dia, S.Y., Singh, S.P. and Prakash, S., 2017. Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cellular and molecular life sciences, 74(20), pp.3769-3787.
- Wang, X. and Michaelis, E.K., 2010. Selective neuronal vulnerability to oxidative stress in the brain. Frontiers in aging neuroscience, 2, p.12.
- Franceschi, C. and Campisi, J., 2014. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 69(Suppl_1), pp.S4-S9.
- Hu, C.T., Wu, J.R., Cheng, C.C., Wang, S., Wang, H.T., Lee, M.C., Wang, L.J., Pan, S.M., Chang, T.Y. and Wu, W.S., 2011. Reactive oxygen species-mediated PKC and integrin signaling promotes tumor progression of human hepatoma HepG2. Clinical & experimental metastasis, 28(8), pp.851-863.
- Trombino, S., Cassano, R., Ferrarelli, T., Barone, E., Picci, N. and Mancuso, C., 2013. Trans-ferulic acid-based solid lipid nanoparticles and their antioxidant effect in rat brain microsomes. Colloids and Surfaces B: Biointerfaces, 109, pp.273-279.
- Gim, S.A., Sung, J.H., Shah, F.A., Kim, M.O. and Koh, P.O., 2013. Ferulic acid regulates the AKT/GSK-3β/CRMP-2 signaling pathway in a middle cerebral artery occlusion animal model. Laboratory animal research, 29(2), pp.63-69.
- Hernandez-Baltazar, D., Zavala-Flores, L.M. and Villanueva-Olivo, A., 2017. The 6-hydroxydopamine model and parkinsonian pathophysiology: Novel findings in an older model. Neurología (English Edition), 32(8), pp.533-539.
- Blesa, J. and Przedborski, S., 2014. Parkinson’s disease: animal models and dopaminergic cell vulnerability. Frontiers in neuroanatomy, 8, p.155.
- Zhang, Z.R., Zhang, X.R., Luan, X.Q., Wang, X.S., Wang, W.W., Wang, X.Y., Shao, B. and Xie, C.L., 2019. Striatal overexpression of β-arrestin2 counteracts L-dopa-induced dyskinesia in 6-hydroxydopamine lesioned Parkinson's disease rats. Neurochemistry international, 131, p.104543.
- Decressac, M., Mattsson, B. and Björklund, A., 2012. Comparison of the behavioural and histological characteristics of the 6-OHDA and α-synuclein rat models of Parkinson's disease. Experimental neurology, 235(1), pp.306-315.
- Wang, Y.Y., Wang, Y., Jiang, H.F., Liu, J.H., Jia, J., Wang, K., Zhao, F., Luo, M.H., Luo, M.M. and Wang, X.M., 2018. Impaired glutamatergic projection from the motor cortex to the subthalamic nucleus in 6-hydroxydopamine-lesioned hemi-parkinsonian rats. Experimental neurology, 300, pp.135-148.
- Stuendl, A., Kunadt, M., Kruse, N., Bartels, C., Moebius, W., Danzer, K.M., Mollenhauer, B. and Schneider, A., 2016. Induction of α-synuclein aggregate formation by CSF exosomes from patients with Parkinson’s disease and dementia with Lewy bodies. Brain, 139(2), pp.481-494.
- Santos, S.F., de Oliveira, H.L., Yamada, E.S., Neves, B.C. and Pereira, A., 2019. The gut and Parkinson’s disease--a bidirectional pathway. Frontiers in Neurology, 10, p.574.
- Ferretta, A., Gaballo, A., Tanzarella, P., Piccoli, C., Capitanio, N., Nico, B., Annese, T., Di Paola, M., Dell'Aquila, C., De Mari, M. and Ferranini, E., 2014. Effect of resveratrol on mitochondrial function: implications in parkin-associated familiar Parkinson's disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1842(7), pp.902-915.
- Ojha, S., Javed, H., Azimullah, S. and Haque, M.E., 2016. β-Caryophyllene, a phytocannabinoid attenuates oxidative stress, neuroinflammation, glial activation, and salvages dopaminergic neurons in a rat model of Parkinson disease. Molecular and cellular biochemistry, 418(1-2), pp.59-70.
- Baluchnejadmojarad, T., Eftekhari, S.M., Jamali-Raeufy, N., Haghani, S., Zeinali, H. and Roghani, M., 2017. The anti-aging protein klotho alleviates injury of nigrostriatal dopaminergic pathway in 6-hydroxydopamine rat model of Parkinson's disease: Involvement of PKA/CaMKII/CREB signaling. Experimental Gerontology, 100, pp.70-76.
- Rahmani, B., Zendehdel, M., Babapour, V., Sadeghinezhad, J. and Alirezaei, M., 2019. Evaluation of Betaine Neuroprotective Effects on 6-Hydroxydopamine-Induced hemi-Parkinsonism in Male Wistar Rats. Iranian Journal of Veterinary Medicine, 13(3), pp.290-302.
- Lai, C.L., Lu, C.C., Lin, H.C., Sung, Y.F., Wu, Y.P., Hong, J.S. and Peng, G.S., 2019. Valproate is protective against 6-OHDA-induced dopaminergic neurodegeneration in rodent midbrain: A potential role of BDNF up-regulation. Journal of the Formosan Medical Association, 118(1), pp.420-428.
- Fan, Y., Zhao, X., Lu, K. and Cheng, G., 2020. LncRNA BDNF-AS promotes autophagy and apoptosis in MPTP-induced Parkinson’s disease via ablating microRNA-125b-5p. Brain Research Bulletin, 157, pp.119-127.
- Carabottia, M., Sciroccoa, A., Masellib, M.A. and Severia, C., 2015. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol, 28(1), pp.1-7.
- Ait-Belgnaoui, A., Durand, H., Cartier, C., Chaumaz, G., Eutamene, H., Ferrier, L., Houdeau, E., Fioramonti, J., Bueno, L. and Theodorou, V., 2012. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology, 37(11), pp.1885-1895.
- Liang, S., Wang, T., Hu, X., Luo, J., Li, W., Wu, X., Duan, Y. and Jin, F., 2015. Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience, 310, pp.561-577.
|