- Franke GN, Kubasch AS, Cross M, Vucinic V, Platzbecker U. Iron overload and its impact on outcome of patients with hematological diseases. Mol Aspects Med. 2020;75:100868. DOI: 10.1016/j.mam.2020.100868.
- Fernandes JL. MRI for Iron overload in thalassemia. Hematol Oncol Clin North Am. 2018;32(2):277-95. DOI: 10.1016/j.hoc.2017.11.012.
- Sarikouch S, Koerperich H, Boethig D, Peters B, Lots J, Gutberlet M, et al. Reference values for atrial size and function in children and young adults by cardiac MR: a study of the German competence network congenital heart defects. J Magn Reson Imaging. 2011;33(5):1028-39. DOI: 10.1002/jmri.22521.
- Wood JC, Enriquez C, Ghugre N, Otto-duessel M, Aguilar M, Nelson MD, et al. Physiology and pathophysiology of iron cardiomyopathy in thalassemia. Ann N Y Acad Sci. 2005;1054:386-95. DOI: 10.1196/annals.1345.047.
- Vogel M, Anderson LJ, Holden S, Deanfield JE, Pennell DJ, Walker JM. Tissue doppler echocardiography in patients with thalassaemia detects early myocardial dysfunction related to myocardial iron overload. Eur Heart J. 2003;24(1):113-9. DOI: 10.1016/s0195-668x(02)00381-0.
- Zareiamand H, Darroudi A, Mohammadi I, Moravvej SV, Danaei S, Alizadehsani R. Cardiac Magnetic Resonance Imaging (CMRI) Applications in Patients with Chest Pain in the Emergency Department: A Narrative Review. Diagnostics (Basel). 2023;13(16):2667. DOI: 10.3390/diagnostics13162667.
- Fragasso A, Ciancio A, Mannarella C, Gaudiano C, Scarciolla O, Ottonello C, et al. Myocardial iron overload assessed by magnetic resonance imaging (MRI) T2* in multi-transfused patients with thalassemia and acquired anemias. Eur J Intern Med. 2011;22(1):62-5. DOI: 10.1016/j.ejim.2010.10.005.
- Meloni A, Restaino G, Borsellino Z, Caruso V, Spasiano A, Zuccarelli A, et al. Different patterns of myocardial iron distribution by whole-heart T2* magnetic resonance as risk markers for heart complications in thalassemia major. Int J Cardiol. 2014;177(3):1009-12. DOI: 10.1016/j.ijcard.2014.09.139.
- Luo Y, Ko JK, Guan Y, Li L, Qin J, Ha PA, et al. Myocardial iron loading assessment by automatic left ventricle segmentation with morphological operations and geodesic active contour on T2* images. Sci Rep. 2015;5:12438. DOI: 10.1038/srep12438.
- Wantanajittikul K, Theera-Umpon N, Saekho S, Auephanwiriankul S, Phrommintikul A, Leemasawat K. Automatic cardiac T2* relaxation time estimation from magnetic resonance images using region growing method with automatically initialized seed points. Comput Methods Programs Biomed. 2016;130:76-86. DOI: 10.1016/j.cmpb.2016.03.015.
- Petitjean C, Dacher JN. A review of segmentation methods in short axis cardiac MR images. Med Image Anal. 2011;15(2):169-84. DOI: 10.1016/j.media.2010.12.004.
- Chen C, Qin C, Qiu H, Tarroni G, Duan J, Bai W, et al. Deep Learning for Cardiac Image Segmentation: A Review. Front Cardiovasc Med. 2020;7:25. DOI: 10.3389/fcvm.2020.00025.
- Hu H, Pan N, Liu H, Liu L, Yin T, Tu Z, et al. Automatic segmentation of left and right ventricles in cardiac MRI using 3D-ASM and deep learning. Signal Process Image Commun. 2021;96:116303. DOI: 10.1016/j.image.2021.116303.
- Xie L, Song Y, Chen Q. Automatic left ventricle segmentation in short-axis MRI using deep convolutional neural networks and central-line guided level set approach. Comput Biol Med. 2020;122:103877. DOI: 10.1016/j.compbiomed.2020.103877.
- Vigneault DM, Xie W, Ho CY, Bluemke DA, Noble JA. Ω-Net (Omega-Net): Fully automatic, multi-view cardiac MR detection, orientation, and segmentation with deep neural networks. Med Image Anal. 2018;48:95-106. DOI: 10.1016/j.media.2018.05.008.
- Abdeltawab H, Khalifa F, Taher F, Alghamdi NS, Ghazal M, Beache G, et al. A deep learning-based approach for automatic segmentation and quantification of the left ventricle from cardiac cine MR images. Comput Med Imaging Graph. 2020;81:101717. DOI: 10.1016/j.compmedimag.2020.101717.
- Avendi MR, Kheradvar A, Jafarkhani H. A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med Image Anal. 2016;30:108-19. DOI: 10.1016/j.media.2016.01.005.
- Martini N, Meloni A, Positano V, et al. Fully Automated Regional Analysis of Myocardial T2* Values for Iron Quantification Using Deep Learning. Electronics. 2022;11:2749. DOI: 10.3390/electronics11172749.
- Shiae Ali E, Bakhshali MA, Shoja Razavi SJ, Poorzand H, Layegh P. Cardiac MR images of thalassemia major patients with myocardial iron overload: a data note. BMC Res Notes. 2021;14:318. DOI: 10.1186/s13104-021-05733-2.
- Nazarpoor M. Non-uniformity of Clinical Head, Head and Neck, and Body Coils in Magnetic Resonance Imaging (MRI). Iran J Med Phys. 2014;11(4):322-7.
- Lotfi Marangaloo S, Ariamanesh AS, Aminzadeh B, Abedi H, Abbaszadeh A, Montazerabadi A. Comparison of Three-Dimensional Double-Echo Steady-State Sequence with Routine Two-Dimensional Sequence in the Depiction of Knee Cartilage. Iran J Med Phys. 2020;17(2):75-80.
- Anderson LJ, Holden S, Davis B, Prescott E, Charrier CC, Bunce NH, et al. Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J. 2001;22(23):2171-9. DOI: 10.1053/euhj.2001.2822.
- Zhu YM. Volume image registration by cross-entropy optimization. IEEE Trans Med Imaging. 2002;21(2):174-80. DOI: 10.1109/42.993135.
- Li Q, Li L, Wang W, Li Q, Zhong J. A comprehensive exploration of semantic relation extraction via pre-trained CNNs. Knowl Based Syst. 2020;194:105488. DOI: 10.1016/j.knosys.2020.105488.
- Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab N, Hornegger J, Wells W, Frangi A, editors. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Cham: Springer; 2015. p. 234– DOI: 10.1007/978-3-319-24574-4_28.
|