- Wenzel SE, Schwartz LB, Langmack EL, Halliday JL, Trudeau JB, Gibbs RL, Chu HW. Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med (1999) 160:1001–1008. doi: 10.1164/AJRCCM.160.3.9812110.
- Lugogo NL, Akuthota P. Type 2 Biomarkers in Asthma: Yet Another Reflection of Heterogeneity. J allergy Clin Immunol Pract (2021) 9:1276–1277. doi: 10.1016/J.JAIP.2020.12.032.
- Hudey SN, Ledford DK, Cardet JC. Mechanisms of non-type 2 asthma. Curr Opin Immunol (2020) 66:123–128. 292 doi: 10.1016/J.COI.2020.10.002.
- Gregory LG, Lloyd CM.Orchestrating house dust mite-associated allergy in the lung. Trends Immunol (2011) 32:402–411. doi: 10.1016/J.IT.2011.06.006.
- Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. 296 Definition according to profiles of lymphokine activities and secreted proteins. J Immunol (1986) 136:2348–57.
- Muehling LM, Lawrence MG, Woodfolk JA. Pathogenic CD4+ T cells in patients with asthma. J Allergy Clin Immunol (2017) 140:1523–1540. doi: 10.1016/j.jaci.2017.02.025
- Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol (1995) 155:1151–64. 302
- Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol (2005) 6:1133–1141. doi: 10.1038/NI1261
- Ghoreschi K, Laurence A, Xiang-Ping Y, M Tato C,J McGeachy M, et al. Generation of pathogenic T(H)17 cells in the absence of TGF-β signalling. Nature (2010) 467:967–971. doi: 10.1038/NATURE09447
- Patel DD, Kuchroo VK. Th17 Cell Pathway in Human Immunity: Lessons from Genetics and Therapeutic Interventions. Immunity (2015) 43:1040–1051. doi: 10.1016/J.IMMUNI.2015.12.003
- Dardalhon V, Awasthi A, Kwon H, Galileos G, Gao W, Sobel RA, Mitsdoerffer M, Strom TB, et al. IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3(-) effector T cells. 310 Nat Immunol (2008) 9:1347–1355. doi: 10.1038/NI.1677
- Trifari S, Kaplan CD, Tran EH, Crellin NK, Spits H. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells. Nat Immunol (2009) 10:864–871. doi: 10.1038/NI.1770
- Hammad H, Lambrecht BN. Barrier Epithelial Cells and the Control of Type 2 Immunity. Immunity (2015) 43:29–40. doi: 10.1016/J.IMMUNI.2015.07.007
- Ogasawara N, Klingler AI, Tan BK, Poposki JA, Hulse KE, Stevens WW, Peters AT, Grammer LC, Welch KC, 317 Smith SS, et al. Epithelial activators of type 2 inflammation: Elevation of thymic stromal lymphopoietin, but not IL-25 or IL-33, in chronic rhinosinusitis with nasal polyps in Chicago, Illinois. Allergy (2018) 73:2251–2254. doi:10.1111/ALL.13552
- Tamachi T, Maezawa Y, Ikeda K, Kagami S ichiro, Hatano M, Seto Y, Suto A, Suzuki K, Watanabe N, Saito Y, 321 et al. IL-25 enhances allergic airway inflammation by amplifying a TH2 cell-dependent pathway in mice. J Allergy Clin Immunol (2006) 118:606–614. doi: 10.1016/J.JACI.2006.04.051
- Morita H, Arae K, Unno H, Toyama S, Motomura K, Matsuda A, Suto H, Okumura K, Sudo K, Takahashi T, et IL-25 and IL-33 Contribute to Development of Eosinophilic Airway Inflammation in Epicutaneously Antigen- 325 Sensitized Mice. PLoS One (2015) 10: doi: 10.1371/JOURNAL.PONE.0134226
- Oboki K, Ohno T, Kajiwara N, Arae K, Morita H, Ishii A, Nambu A, Abe T, Kiyonari H, Matsumoto K, et al. IL- 327 33 is a crucial amplifier of innate rather than acquired immunity. Proc Natl Acad Sci U S A (2010) 107:18581– 328 18586. doi: 10.1073/PNAS.1003059107
- Pandey A, Ozaki K, Baumann H, Levin SD, Puel A, Farr AG, Ziegler SF, Leonard WJ, Lodish HF. Cloning of a receptor subunit required for signaling by thymic stromal lymphopoietin. Nat Immunol (2000) 1:59–64. doi:10.1038/76923
- Lai JF, Thompson LJ, Ziegler SF. TSLP drives acute T H 2-cell differentiation in lungs. J Allergy Clin Immunol (2020) 146:1406-1418.e7. doi: 10.1016/J.JACI.2020.03.032
- Shikotra A, Choy DF, Ohri CM, Doran E, Butler C, Hargadon B, et al. Increased expression of immunoreactive thymic stromal lymphopoietin in patients with severe asthma. J Allergy Clin Immunol (2012) 129: doi:10.1016/J.JACI.2011.08.031
- Ying S, O'Connor B, Ratoff J, Meng Q, Fang C, Cousins D, et al. Expression and cellular provenance of thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive pulmonary disease. 339 J Immunol (2008) 181:2790–2798. doi: 10.4049/JIMMUNOL.181.4.2790
- Kabata H, Moro K, Fukunaga K, Suzuki Y, Miyata J, Masaki K, Betsuyaku T, Koyasu S, Asano K. Thymic stromal lymphopoietin induces corticosteroid resistance in natural helper cells during airway inflammation. Nat Commun (2013) 4:1–7. doi: 10.1038/ncomms3675
- Liu S, Verma M, Michalec L, Liu W, Sripada A, Rollins D, Good J, Ito Y, Chu HW, Gorska MM, et al. Steroid resistance of airway type 2 innate lymphoid cells from patients with severe asthma: The role of thymic stromal lymphopoietin. J Allergy Clin Immunol (2018) 141:257-268.e6. doi: 10.1016/j.jaci.2017.03.032
- Gauvreau GM, O’Byrne PM, Boulet L-P, Wang Y, Cockcroft D, Bigler J, FitzGerald JM, Boedigheimer M, 347 Davis BE, Dias C, et al. Effects of an Anti-TSLP Antibody on Allergen-Induced Asthmatic Responses. N Engl J Med (2014) 370:2102–2110. doi: 10.1056/NEJMOA1402895
- Nakajima S, Kabata H, Kabashima K, Asano K. Anti-TSLP antibodies: Targeting a master regulator of type 2 immune responses. Allergol Int (2020) 69:197–203. doi: 10.1016/J.ALIT.2020.01.001
- Matera MG, Rogliani P, Calzetta L, Cazzola M. TSLP Inhibitors for Asthma: Current Status and Future Prospects. 352 Drugs (2020) 80:449–458. doi: 10.1007/S40265-020-01273-4
- Toki S, Goleniewska K, Zhang J, Zhou W, Newcomb DC, Zhou B, Kita H, Boyd KL, Peebles RS. TSLP and IL- 354 33 reciprocally promote each other’s lung protein expression and ILC2 receptor expression to enhance innate type-2 airway inflammation. Allergy (2020) 75:1606–1617. doi: 10.1111/ALL.14196
- Morita H, Moro K, Koyasu S. Innate lymphoid cells in allergic and nonallergic inflammation. J Allergy Clin Immunol (2016) 138:1253–1264. doi: 10.1016/J.JACI.2016.09.011
- Halim TYF, Steer CA, Mathä L, Gold MJ, Martinez-Gonzalez I, McNagny KM, McKenzie ANJ, Takei F. Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity (2014) 40:425–435. doi: 10.1016/J.IMMUNI.2014.01.011
- Akdis CA, Arkwright PD, Brüggen MC, Busse W, Gadina M, Guttman-Yassky E, Kabashima K, Mitamura Y, 362 Vian L, Wu J, et al. Type 2 immunity in the skin and lungs. Allergy Eur J Allergy Clin Immunol (2020) 75:1582– 363 1605. doi: 10.1111/all.14318
- Rothenberg ME, Hogan SP. The eosinophil. Annu Rev Immunol (2006) 24:147–174. doi: 10.1146/ANNUREV.IMMUNOL.24.021605.090720
- Malm-Erjefält M, Greiff L, Ankerst J, Andersson M, Wallengren J, Cardell LO, Rak S, Persson CGA, Erjefält JS. 367 Circulating eosinophils in asthma, allergic rhinitis, and atopic dermatitis lack morphological signs of degranulation. Clin Exp Allergy (2005) 35:1334–1340. doi: 10.1111/J.1365-2222.2005.02335.X
- Neves JS, Perez SAC, Spencer LA, Melo RCN, Reynolds L, Ghiran I, Mahmudi-Azer S, Odemuyiwa SO, 370 Dvorak AM, Moqbel R, et al. Eosinophil granules function extracellularly as receptor-mediated secretory organelles. Proc Natl Acad Sci U S A (2008) 105:18478–18483. doi: 10.1073/PNAS.0804547105
- Amin K, Janson C, Bystrom J. Role of Eosinophil Granulocytes in Allergic Airway Inflammation Endotypes. 373 Scand J Immunol (2016) 84:75–85. doi: 10.1111/SJI.12448
- Ueki S, Mahemuti G, Oyamada H, Kato H, Kihara J, Tanabe M, Ito W, Chiba T, Takeda M, Kayaba H, et al. 375 Retinoic acids are potent inhibitors of spontaneous human eosinophil apoptosis. J Immunol (2008) 181:7689– 376 7698. doi: 10.4049/JIMMUNOL.181.11.7689
- Adachi T, Alam R. The mechanism of IL-5 signal transduction. Am J Physiol (1998) 275: doi: 10.1152/AJPCELL.1998.275.3.C623
- Ueki S, Melo RCN, Ghiran I, Spencer LA, Dvorak AM, Weller PF. Eosinophil extracellular DNA trap cell death mediates lytic release of free secretion-competent eosinophil granules in humans. Blood (2013) 121:2074–2083. 381 doi: 10.1182/BLOOD-2012-05-432088.
- Wills-Karp M. Interleukin-13 in asthma pathogenesis. Immunol Rev (2004) 202:175–190. doi: 10.1111/j.0105- 383 2896.2004.00215.x
- Xiong H, Dolpady J, Wabl M, de Lafaille MAC, Lafaille JJ. Sequential class switching is required for the generation of high affinity IgE antibodies. J Exp Med (2012) 209:353–364. doi: 10.1084/jem.20111941
- Krystel-Whittemore M, Dileepan KN, Wood JG. Mast cell: A multi-functional master cell. Front Immunol (2016) 6:1–12. doi: 10.3389/fimmu.2015.00620
- Castillo JR, Peters SP, Busse WW. Asthma Exacerbations: Pathogenesis, Prevention, and Treatment. J Allergy Clin Immunol Pract (2017) 5:918–927. doi: 10.1016/j.jaip.2017.05.001
- Gour N, Wills-Karp M. IL-4 and IL-13 signaling in allergic airway disease. Cytokine (2015) 75:68–78. doi: 10.1016/j.cyto.2015.05.014
- Manson ML, Säfholm J, James A, Johnsson AK, Bergman P, Al-Ameri M, Orre AC, Kärrman-Mårdh C, Dahlén SE, Adner M. IL-13 and IL-4, but not IL-5 nor IL-17A, induce hyperresponsiveness in isolated human small airways. J Allergy Clin Immunol (2020) 145:808-817.e2. doi: 10.1016/J.JACI.2019.10.037
- Nagase H, Ueki S, Fujieda S. The roles of IL-5 and anti-IL-5 treatment in eosinophilic diseases: Asthma, 396 eosinophilic granulomatosis with polyangiitis, and eosinophilic chronic rhinosinusitis. Allergol Int (2020) 69:178–186. doi: 10.1016/J.ALIT.2020.02.002
- Ortega HG, Liu MC, Pavord ID, Brusselle GG, FitzGerald JM, Chetta A, Humbert M, Katz LE, Keene ON, 399 Yancey SW, et al. Mepolizumab treatment in patients with severe eosinophilic asthma. N Engl J Med (2014) 371:1198–1207. doi: 10.1056/NEJMOA1403290
- Eger K, Kroes JA, ten Brinke A, Bel EH. Long-Term Therapy Response to Anti-IL-5 Biologics in Severe Asthma-A Real-Life Evaluation. J allergy Clin Immunol Pract (2021) 9:1194–1200. doi: 10.1016/J.JAIP.2020.10.010
- Busse WW, Brusselle GG, Korn S, Kuna P, Magnan A, Cohen D, Bowen K, Piechowiak T, Wang MM, Colice G. 405 Tralokinumab did not demonstrate oral corticosteroid-sparing effects in severe asthma. Eur Respir J (2019) 53: doi: 10.1183/13993003.00948-2018
- Castro M, Corren J, Pavord ID, Maspero J, Wenzel S, Rabe KF, Busse WW, Ford L, Sher L, FitzGerald JM, et al. 408 Dupilumab Efficacy and Safety in Moderate-to-Severe Uncontrolled Asthma. N Engl J Med (2018) 378:2486– 409 2496. doi: 10.1056/NEJMOA1804092
- Bourdin A, Papi AA, Corren J, Virchow JC, Rice MS, Deniz Y, Djandji M, Rowe P, Pavord ID. Dupilumab is effective in type 2-high asthma patients receiving high-dose inhaled corticosteroids at baseline. Allergy (2021) 76:269–280. doi: 10.1111/ALL.14611
- Conde E, Bertrand R, Balbino B, Bonnefoy J, Stackowicz J, Caillot N, Colaone F, Hamdi S, Houmadi R, Loste A, 414 et al. Dual vaccination against IL-4 and IL-13 protects against chronic allergic asthma in mice. Nat Commun (2021) 12: doi: 10.1038/S41467-021-22834-5
- Okayama Y, Matsumoto H, Odajima H, Takahagi S, Hide M, Okubo K. Roles of omalizumab in various allergic diseases. Allergol Int (2020) 69:167–177. doi: 10.1016/J.ALIT.2020.01.004
- Rigas D, Lewis G, Aron JL, Wang B, Banie H, Sankaranarayanan I, Galle-Treger L, Maazi H, Lo R, Freeman GJ, 419 et al. Type 2 innate lymphoid cell suppression by regulatory T cells attenuates airway hyperreactivity and requires inducible T-cell costimulator-inducible T-cell costimulator ligand interaction. J Allergy Clin Immunol (2017) 139:1468-1477.e2. doi: 10.1016/J.JACI.2016.08.034
- Krishnamoorthy N, Burkett PR, Dalli J, Abdulnour R-EE, Colas R, Ramon S, Phipps RP, Petasis NA, Kuchroo VK, Serhan CN, et al. Cutting edge: maresin-1 engages regulatory T cells to limit type 2 innate lymphoid cell activation and promote resolution of lung inflammation. J Immunol (2015) 194:863–867. doi: 10.4049/JIMMUNOL.1402534
- Kobayashi T, Iijima K, Dent AL, Kita H. Follicular helper T cells mediate IgE antibody response to airborne allergens. J Allergy Clin Immunol (2017) 139:300-313.e7. doi: 10.1016/J.JACI.2016.04.021
- Varricchi G, Harker J, Borriello F, Marone G, Durham SR, Shamji MH. T follicular helper (Tfh ) cells in normal immune responses and in allergic disorders. Allergy (2016) 71:1086–1094. doi: 10.1111/ALL.12878
- Zhang W, Lin C, Sampath V, Nadeau K. Impact of allergen immunotherapy in allergic asthma. Immunotherapy (2018) 10:579–593. doi: 10.2217/imt-2017-0138
- Yao Y, Chen CL, Yu D, Liu Z. Roles of follicular helper and regulatory T cells in allergic diseases and allergen immunotherapy. Allergy Eur J Allergy Clin Immunol (2021) 76:456–470. doi: 10.1111/all.14639
- Valenta R, Campana R, Niederberger V. Recombinant allergy vaccines based on allergen-derived B cell epitopes. 435 Immunol Lett (2017) 189:19–26. doi: 10.1016/J.IMLET.2017.04.015
- Schütze N, Trojandt S, Kuhn S, Tomm JM, von Bergen M, Simon JC, Polte T. Allergen-Induced IL-6 Regulates IL-9/IL-17A Balance in CD4+ T Cells in Allergic Airway Inflammation. J Immunol (2016) 197:2653–2664. doi: 10.4049/JIMMUNOL.1501599
- Sehra S, Yao W, Nguyen ET, Glosson-Byers NL, Akhtar N, Zhou B, Kaplan MH. TH9 cells are required for tissue mast cell accumulation during allergic inflammation. J Allergy Clin Immunol (2015) 136:433-440.e1. doi: 10.1016/J.JACI.2015.01.021
- Buttrick TS, Wang W, Yung C, Trieu KG, Patel K, Khoury SJ, Ai X, Elyaman W. Foxo1 Promotes Th9 Cell Differentiation and Airway Allergy. Sci Rep (2018) 8:1–10. doi: 10.1038/s41598-018-19315-z
- Watanabe A, Mishima H, Renzi PM, Xu LJ, Hamid Q, Martin JG. Transfer of allergic airway responses with antigen-primed CD4+ but not CD8+ T cells in brown Norway rats. J Clin Invest (1995) 96:1303–1310. doi: 10.1172/JCI118165
- Raundhal M, Morse C, Khare A, Oriss TB, Milosevic J, Trudeau J, Huff R, Pilewski J, Holguin F, Kolls J, et al. 448 High IFN-γ and low SLPI mark severe asthma in mice and humans. J Clin Invest (2015) 125:3037–3050. doi: 10.1172/JCI80911
- Yu M, Eckart MR, Morgan AA, Mukai K, Butte AJ, Tsai M, Galli SJ. Identification of an IFN-γ/mast cell axis in a mouse model of chronic asthma. J Clin Invest (2011) 121:3133–3143. doi: 10.1172/JCI43598
- Kikkawa Y, Sugiyama K, Obara K, Hirata H, Fukushima Y, Toda M, Fukuda T. Interferon-alpha inhibits airway eosinophilia and hyperresponsiveness in an animal asthma model [corrected]. Asia Pac Allergy (2012) 2:256. doi: 10.5415/APALLERGY.2012.2.4.256
- Hellings PW, Kasran A, Liu Z, Vandekerckhove P, Wuyts A, Overbergh L, Mathieu C, Ceuppens JL. Interleukin- 456 17 orchestrates the granulocyte influx into airways after allergen inhalation in a mouse model of allergic asthma. 457 Am J Respir Cell Mol Biol (2003) 28:42–50. doi: 10.1165/RCMB.4832
- Ricciardolo FLM, Sorbello V, Folino A, Gallo F, Massaglia GM, Favatà G, Conticello S, Vallese D, Gani F, 459 Malerba M, et al. Identification of IL-17F/frequent exacerbator endotype in asthma. J Allergy Clin Immunol (2017) 140:395–406. doi: 10.1016/J.JACI.2016.10.034
- Dragon S, Rahman MS, Yang J, Unruh H, Halayko AJ, Gounni AS. IL-17 enhances IL-1beta-mediated CXCL-8 release from human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol (2007) 292: doi: 10.1152/AJPLUNG.00306.2006
- Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol (2013) 13:159–175. doi: 10.1038/NRI3399
- Lachowicz-Scroggins ME, Dunican EM, Charbit AR, Raymond W, Looney MR, Peters MC, Gordon ED, 467 Woodruff PG, Lefrançais E, Phillips BR, et al. Extracellular DNA, Neutrophil Extracellular Traps, and Inflammasome Activation in Severe Asthma. Am J Respir Crit Care Med (2019) 199:1076–1085. doi: 10.1164/RCCM.201810-1869OC
- Panettieri RA. The Role of Neutrophils in Asthma. Immunol Allergy Clin North Am (2018) 38:629–638. doi: 10.1016/J.IAC.2018.06.005
- Ray A, Kolls JK. Neutrophilic Inflammation in Asthma and Association with Disease Severity. Trends Immunol (2017) 38:942–954. doi: 10.1016/j.it.2017.07.003
- Snelgrove RJ, Patel DF, Patel T, Lloyd CM. The enigmatic role of the neutrophil in asthma: Friend, foe or indifferent? Clin Exp Allergy (2018) 48:1275–1285. doi: 10.1111/CEA.13191
- Wang Q, Li H, Yao Y, Xia D, Zhou J. The Overexpression of Heparin-Binding Epidermal Growth Factor Is Responsible for Th17-Induced Airway Remodeling in an Experimental Asthma Model. J Immunol (2010) 185:834–841. doi: 10.4049/jimmunol.0901490
- Lu S, Li H, Gao R, Gao X, Xu F, Wang Q, Lu G, Xia D, Zhou J. IL-17A, But Not IL-17F, Is Indispensable for Airway Vascular Remodeling Induced by Exaggerated Th17 Cell Responses in Prolonged Ovalbumin-Challenged Mice. J Immunol (2015) 194:3557–3566. doi: 10.4049/jimmunol.1400829
- Al-Ramli W, Préfontaine D, Chouiali F, Martin JG, Olivenstein R, Lemière C, Hamid Q. T(H)17-associated cytokines (IL-17A and IL-17F) in severe asthma. J Allergy Clin Immunol (2009) 123:1185–1187. doi: 10.1016/J.JACI.2009.02.024
- Esty B, Harb H, Bartnikas LM, Charbonnier LM, Massoud AH, Leon-Astudillo C, Visner G, Subramaniam M, 486 Phipatanakul W, Chatila TA. Treatment of severe persistent asthma with IL-6 receptor blockade. J allergy Clin Immunol Pract (2019) 7:1639-1642.e4. doi: 10.1016/J.JAIP.2019.02.043
- Busse WW, Holgate S, Kerwin E, Chon Y, Feng J, Lin J, Lin S-L. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am J Respir Crit Care Med (2013) 188:1294–1302. doi: 10.1164/RCCM.201212-2318OC
- Kwah JH, Peters AT. Asthma in adults: Principles of treatment. Allergy asthma Proc (2019) 40:396–402. doi: 10.2500/AAP.2019.40.4256
- Slovick A, Douiri A, Muir R, Guerra A, Tsioulos K, Hay E, Lam EPS, Kelly J, Peacock JL, Ying S, et al. Intradermal grass pollen immunotherapy increases T H 2 and IgE responses and worsens respiratory allergic symptoms. J Allergy Clin Immunol (2017) 139:1830-1839.e13. doi: 10.1016/J.JACI.2016.09.024
- Romeo MJ, Agrawal R, Pomés A, Woodfolk JA. A molecular perspective on TH2-promoting cytokine receptors in patients with allergic disease. J Allergy Clin Immunol (2014) 133: doi: 10.1016/J.JACI.2013.08.006
- Homburg U, Renz H, Timmer W, Hohlfeld JM, Seitz F, Lüer K, Mayer A, Wacker A, Schmidt O, Kuhlmann J, et al. Safety and tolerability of a novel inhaled GATA3 mRNA targeting DNAzyme in patients with TH2-driven asthma. J Allergy Clin Immunol (2015) 136:797–800. doi: 10.1016/J.JACI.2015.02.018
- Krug N, Hohlfeld JM, Kirsten A-M, Kornmann O, Beeh KM, Kappeler D, Korn S, Ignatenko S, Timmer W, 502 Rogon C, et al. Allergen-induced asthmatic responses modified by a GATA3-specific DNAzyme. N Engl J Med (2015) 372:1987–1995. doi: 10.1056/NEJMOA1411776
|