- Li JS, Tsai TY, Clancy MM, Li G, Lewis CL, Felson DT. Weight loss changed gait kinematics in individuals with obesity and knee pain. Gait Posture. 2019; 68:461-465. doi:https://doi.org/10.1016/j.gaitpost.2018.12.031.
- Kan H, Chan P, Chiu K, et al. Non-surgical treatment of knee osteoarthritis. Hong Kong Med J. 2019; 25(2):127. doi:http://dx.doi.org/10.12809/hkmj187600.
- Yari D, Ebrahimzadeh MH, Movaffagh J, et al. Biochemical aspects of scaffolds for cartilage tissue engineering; from basic science to regenerative medicine. Arch Bone Jt Surg. 2022; 10(3):229. doi:https://doi.org/10.1586/erd.11.27.
- Jung CS, Kim BK, Lee J, Min BH, Park SH. Development of printable natural cartilage matrix bioink for 3D printing of irregular tissue shape. Tissue Eng Regen Med. 2017; 15(2):155-162. doi: 10.1007/s13770-017-0104-8.
- Ghasemi, F., Jahani, A., Moradi, A., Ebrahimzadeh, M. H., & Jirofti, N. (2023). Different Modification Methods of Poly Methyl Methacrylate (PMMA) Bone Cement for Orthopedic Surgery Applications. Arch Bone Jt Surg, 11(8), 485-492. doi:https://doi.org/10.22038/abjs.2023.71289.3330
- Hutmacher DW, Tandon B, Dalton PD. Scaffold design and fabrication. InTissue engineering 2023 (pp. 355-385). Academic Press.
- Mahendiran B, Muthusamy S, Sampath S, et al. Recent trends in natural polysaccharide based bioinks for multiscale 3D printing in tissue regeneration: A review. Int J Biol Macromol. 2021; 183:564-588. doi:https://doi.org/10.1016/j.ijbiomac.2021.04.179.
- Farokhi M, Jonidi Shariatzadeh F, Solouk A, Mirzadeh H. Alginate based scaffolds for cartilage tissue engineering: a review. International Journal of Polymeric Materials and Polymeric Biomaterials. 2020; 69(4):230-247. doi:https://doi.org/10.1080/00914037.2018.1562924.
- Ji X, Lei Z, Yuan M, et al. Cartilage repair mediated by thermosensitive photocrosslinkable TGFβ1-loaded GM-HPCH via immunomodulating macrophages, recruiting MSCs and promoting chondrogenesis. Theranostics. 2020; 10(6):2872. doi:https://doi.org/10.7150/thno.41622.
- Ghassemi T, Shahroodi A, Ebrahimzadeh MH, Mousavian A, Movaffagh J, Moradi A. Current concepts in scaffolding for bone tissue engineering. Arch Bone Jt Surg. 2018; 6(2):90.
- Zhang Y, Li W, Laurent T, Ding S. Small molecules, big roles–the chemical manipulation of stem cell fate and somatic cell reprogramming. J Cell Sci.2012; 125(23):5609-5620. doi:https://doi.org/10.1242/jcs.096032.
- Morrison RJ, Nasser HB, Kashlan KN, et al. Co‐culture of adipose‐derived stem cells and chondrocytes on three‐dimensionally printed bioscaffolds for craniofacial cartilage engineering. The Laryngoscope. 2018; 128(7):E251-E257. doi: https://doi.org/10.1002/lary.27200.
- Stansbury JW, Idacavage MJ. 3D printing with polymers: Challenges among expanding options and opportunities. Dent Mater. 2016; 32(1):54-64. doi:https://doi.org/10.1016/j.dental.2015.09.018.
- Jahanbakhsh A, Nourbakhsh MS, Bonakdar S, Shokrgozar MA, Haghighipour N. Evaluation of Alginate modification effect on cell-matrix interaction, mechanotransduction and chondrogenesis of encapsulated MSCs. Cell Tissue Res. 2020;381(2):255-272. doi:https://doi.org/10.1007/s00441-020-03216-7.
- Yeo MG, Kim GH. A cell-printing approach for obtaining hASC-laden scaffolds by using a Collagen/polyphenol bioink. Biofabrication. 2017; 9(2):025004. doi:https://doi.org/10.1088/1758-5090/aa6997.
- Stanton M, Samitier J, Sanchez S. Bioprinting of 3D hydrogels. Lab Chip. 2015; 15(15):3111-3115. doi:https://doi.org/10.1039/C5LC90069G.
- Mallakpour S, Azadi E, Hussain CM. State-of-the-art of 3D printing technology of Alginate-based hydrogels—an emerging technique for industrial applications. Adv Colloid Interface Sci. 2021; 293:102436. doi: 10.1016/j.cis.2021.102436.
- Chen Y, Xiong X, Liu X, et al. 3D Bioprinting of shear-thinning hybrid bioinks with excellent bioactivity derived from gellan/Alginate and thixotropic magnesium phosphate-based gels. J Mater Chem B. 2020; 8(25):5500-5514. doi:https://doi.org/10.1039/D0TB00060D.
- Li H, Liu S, Lin L. Rheological study on 3D printability of Alginate hydrogel and effect of graphene oxide. International Journal of Bioprinting. 2016; 2(2)doi:https://doi.org/10.3390/gels8010028.
- T. Somasekharan L, Kasoju N, Raju R, Bhatt A. Formulation and characterization of Alginate dialdehyde, Gelatin, and platelet-rich plasma-based bioink for bioprinting applications. Bioengineering (Basel). 2020; 7(3):108. doi: 10.3390/bioengineering7030108.
- Hazur J, Detsch R, Karakaya E, et al. Improving Alginate printability for biofabrication: establishment of a universal and homogeneous pre-crosslinking technique. Biofabrication. 2020; 12(4):045004. doi:https://doi.org/10.1088/1758-5090/ab98e5.
- Falcone G, Mazzei P, Piccolo A, et al. Advanced printable hydrogels from pre-crosslinked Alginate as a new tool in semi solid extrusion 3D printing process. Carbohydr Polym. 2022; 276:118746. doi:https://doi.org/10.1016/j.carbpol.2021.118746.
- Schuurman W, Khristov V, Pot MW, van Weeren PR, Dhert WJ, Malda J. Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication. 2011; 3(2):021001. doi:https://doi.org/10.1088/1758-5082/3/2/021001.
- Chung JH, Naficy S, Yue Z, et al. Bio-ink properties and printability for extrusion printing living cells. Biomater Sci. 2013; 1(7):763-773. doi:https://doi.org/10.1039/C3BM00012E.
- Kong H-J, Lee KY, Mooney DJ. Decoupling the dependence of rheological/mechanical properties of hydrogels from solids concentration. Polymer. 2002; 43(23):6239-6246. doi:https://doi.org/10.1016/S0032-3861 (02)00559-1.
- Lee J-S, Hong JM, Jung JW, Shim J-H, Oh J-H, Cho D-W. 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication. 2014; 6(2):024103. doi:https://doi.org/10.1088/1758-5082/6/2/024103.
- O'Shea DG, Curtin CM, O'Brien FJ. Articulation inspired by nature: a review of biomimetic and biologically active 3D printed scaffolds for cartilage tissue engineering. Biomater Sci. 2022; 10(10):2462-2483 doi:https://doi.org/10.1039/D1BM01540K.
- Zhu M, He X, Xin C, Zhu Y, Liu Z. 3D printing of an integrated triphasic MBG-Alginate scaffold with enhanced interface bonding for hard tissue applications. J Mater Sci Mater Med. 2020; 31(12):113. doi:https://doi.org/10.1007/s10856-020-06459-6.
- Shanto PC, Park S, Park M, Lee B-T. Physico-biological evaluation of 3D printed dECM/TOCN/Alginate hydrogel based scaffolds for cartilage tissue regeneration. Biomater Adv. 2023; 145:213239. doi:https://doi.org/10.1016/j.bioadv.2022.213239.
- Karunanithi P, Murali MR, Samuel S, Raghavendran HRB, Abbas AA, Kamarul T. Three dimensional Alginate-fucoidan composite hydrogel augments the chondrogenic differentiation of mesenchymal stromal cells. Carbohydr Polym. 2016; 147:294-303. doi:https://doi.org/10.1016/j.carbpol.2016.03.102.
- Tiwari S, Patil R, Bahadur P. Polysaccharide based scaffolds for soft tissue engineering applications. Polymers. 2018; 11(1):1. doi:https://doi.org/10.3390/polym11010001.
- Mohsenifard S, Mashayekhan S, Safari H. A hybrid cartilage extracellular matrix-based hydrogel/poly (ε-caprolactone) scaffold incorporated with Kartogenin for cartilage tissue engineering. J Biomater Appl. 2023; 37(7):1243-1258. doi: 10.1177/08853282221132987.
- Mohsenifard S, Mashayekhan S, Safari H. A hybrid cartilage extracellular matrix-based hydrogel/poly (ε-caprolactone) scaffold incorporated with Kartogenin for cartilage tissue engineering. J Biomater Appl. 2022; 37(7):1243-1258. doi: 10.1177/08853282221132987.
- Theruvath AJ, Mahmoud EE, Wu W, et al. Ascorbic Acid and Iron Supplement Treatment Improves Stem Cell–Mediated Cartilage Regeneration in a Minipig Model. Am J Sports Med. 2021; 49(7):1861-1870. doi:https://doi.org/10.1177/036354652110057.
- Mollon B, Kandel R, Chahal J, Theodoropoulos J. The clinical status of cartilage tissue regeneration in humans. Osteoarthritis Cartilage. 2013; 21(12):1824-1833. doi:https://doi.org/10.1016/j.joca.2013.08.024.
- Tajfiroozeh F, Moradi A, Shahidi F, et al. Fabrication and characterization of gallic-acid/nisin loaded electrospun core/shell chitosan/polyethylene oxide nanofiberous membranes with free radical scavenging capacity and antimicrobial activity for food packing applications. Food Bioscience. 2023; 53:102529. doi:https://doi.org/10.1016/j.fbio.2023.102529.
- Movaffagh J, Bazzaz F, Yazdi AT, et al. Wound Healing and Antimicrobial Effects of Chitosan-hydrogel/Honey Compounds in a Rat Full-thickness Wound Model. Wounds. 2019; 31(9):228-235. doi:https://doi.org/10.17488/rmib.43.1.2.
- Tirella A, Orsini A, Vozzi G, Ahluwalia A. A phase diagram for microfabrication of geometrically controlled hydrogel scaffolds. Biofabrication. 2009; 1(4):045002. doi:https://doi.org/10.1088/1758-5082/1/4/045002.
- Kuo CK, Ma PX. Ionically crosslinked Alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials. 2001; 22(6):511-521. doi:https://doi.org/10.1016/S0142-9612 (00)00201-5.
- Jirofti, N., Poorsargol, M., Sarhaddi, F., Jahani, A., Kadkhoda, J., Kalalinia, F., . . . Taboada, P. (2023). Polymer stabilized, phenytoin-loaded nanomicelles as promising nanocarriers: In silico and in vitro evaluations. European Polymer Journal, 196, 112228. doi:https://doi.org/10.1016/j.eurpolymj.2023.112228
- Liu Q, Li Q, Xu S, Zheng Q, Cao X. Preparation and properties of 3D printed Alginate–chitosan polyion complex hydrogels for tissue engineering. Polymers. 2018; 10(6):664. doi:https://doi.org/10.3390/polym10060664.
- Hong J, Kim B-S, Char K, Hammond PT. Inherent charge-shifting polyelectrolyte multilayer blends: a facile route for tunable protein release from surfaces. Biomacromolecules. 2011; 12(8):2975-2981. doi:https://doi.org/10.1021/bm200566k.
- Reed S, Lau G, Delattre B, Lopez DD, Tomsia AP, Wu BM. Macro-and micro-designed chitosan-Alginate scaffold architecture by three-dimensional printing and directional freezing. Biofabrication. 2016; 8(1):015003. doi:https://doi.org/10.1088/1758-5090/8/1/015003.
- Ngadimin KD, Stokes A, Gentile P, Ferreira AM. Biomimetic hydrogels designed for cartilage tissue engineering. Biomater Sci. 2021; 9(12):4246-4259. doi:https://doi.org/10.1039/D0BM01852J.
- Del Bakhshayesh AR, Asadi N, Alihemmati A, et al. An overview of advanced biocompatible and biomimetic materials for creation of replacement structures in the musculoskeletal systems: focusing on cartilage tissue engineering. J Biol Eng. 2019; 13:1-21. doi:https://doi.org/10.1186/s13036-019-0209-9.
- Naranda J, Bračič M, Vogrin M, Maver U. Recent advancements in 3D printing of polysaccharide hydrogels in cartilage tissue engineering. Materials. 2021; 14(14):3977. doi: https://doi.org/10.3390/ma14143977.
- Li Z, Zhang M. Chitosan–Alginate as scaffolding material for cartilage tissue engineering. J Biomed Mater Res A. 2005; 75(2):485-493. doi: https://doi.org/10.1002/jbm.a.30449.
- Frampton J, Hynd M, Shuler M, Shain W. Fabrication and optimization of Alginate hydrogel constructs for use in 3D neural cell culture. Biomed Mater. 2011; 6(1):015002. doi:https://doi.org/10.1088/1748-6041/6/1/015002.
- Holder A, Badiei N, Hawkins K, Wright C, Williams P, Curtis D. Control of Collagen gel mechanical properties through manipulation of gelation conditions near the sol–gel transition. Soft matter. 2018; 14(4):574-580. doi:https://doi.org/10.1039/C7SM01933E.
- Ramachandran GN. Structure of Collagen at the molecular level. Treatise of Collagen. 1967; 1:103-183. doi:https://doi.org/10.1016/S0945-053X (97)90030-5.
- Ort C, Chen Y, Ghagre A, Ehrlicher A, Moraes C. Bioprintable, stiffness-tunable Collagen-Alginate microgels for increased throughput 3D cell culture studies. ACS Biomater Sci Eng. 2021; 7(6):2814-2822. doi:https://doi.org/10.1021/acsbiomaterials.1c00129.
- Yang X, Lu Z, Wu H, Li W, Zheng L, Zhao J. Collagen-Alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. Mater Sci Eng C Mater Biol Appl. 2018:83:195-201. doi:https://doi.org/10.1016/j.msec.2017.09.002.
- van Uden S, Silva-Correia J, Oliveira JM, Reis RL. Current strategies for treatment of intervertebral disc degeneration: substitution and regeneration possibilities. Biomater Res. 2017; 21(1):1-19. doi:https://doi.org/10.1186/s40824-017-0106-6.
- Wollensak G. Crosslinking treatment of progressive keratoconus: new hope. Curr Opin Ophthalmol. 2006; 17(4):356-360. doi:https://doi.org/10.1097/01.icu.0000233954.86723.25.
- Mrochen M. Current status of accelerated corneal cross-linking. Indian J Ophthalmol. 2013; 61(8):428-429. doi:https://doi.org/10.4103/0301-4738.116075.
- Lee HJ, Kim YB, Ahn SH, et al. A new approach for fabricating Collagen/ECM‐based bioinks using preosteoblasts and human adipose stem cells. Adv Healthc Mater. 2015; 4(9):1359-1368. doi: https://doi.org/10.1002/adhm.201500193.
- Morgan FL, Moroni L, Baker MB. Dynamic bioinks to advance bioprinting. Adv Healthc Mater. 2020; 9(15):1901798. doi: https://doi.org/10.1002/adhm.201901798.
- Levato R, Jungst T, Scheuring RG, Blunk T, Groll J, Malda J. From shape to function: the next step in bioprinting. Adv Mater. 2020; 32(12):1906423. doi: https://doi.org/10.1002/adma.201906423.
- Rathan S, Dejob L, Schipani R, Haffner B, Möbius ME, Kelly DJ. Fiber reinforced cartilage ECM functionalized bioinks for functional cartilage tissue engineering. Adv Healthc Mater. 2019; 8(7):1801501. doi:http://dx.doi.org/10.1002/adhm.201801501.
- Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A. Synthesis, properties, and biomedical applications of Gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015; 73:254-271. doi:https://doi.org/10.1016/j.biomaterials.2015.08.045.
- Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A. Cell-laden microengineered Gelatin methacrylate hydrogels. Biomaterials. 2010; 31(21):5536-5544. doi:https://doi.org/10.1016/j.biomaterials.2010.03.064.
- Wang B, Diaz-Payno PJ, Browe DC, et al. Affinity-bound growth factor within sulfated interpenetrating network bioinks for bioprinting cartilaginous tissues. Acta Biomater. 2021; 128:130-142. doi:https://doi.org/10.1016/j.actbio.2021.04.016.
- Saberi, A., Kouhjani, M., Yari, D., Jahani, A., Asare-Addo, K., Kamali, H., & Nokhodchi, A. (2023). Development, recent advances, and updates in binary, ternary co-amorphous systems, and ternary solid dispersions. Journal of Drug Delivery Science and Technology, 86, 104746. doi:https://doi.org/10.1016/j.jddst.2023.104746
- Li T-F, O’Keefe RJ, Chen D. TGF-β signaling in chondrocytes. Front Biosci. 2005; 10:681. doi:https://doi.org/10.2741/1563.
- Xu X, Jha AK, Harrington DA, Farach-Carson MC, Jia X. Hyaluronic acid-based hydrogels: from a natural polysaccharide to complex networks. Soft matter. 2012; 8(12):3280-3294. doi:https://doi.org/10.1039/C2SM06463D.
- Moradi A. Development of bovine cartilage extracellular matrix as a potential scaffold for chondrogenic induction of human dermal fibroblasts. University of Malaya; 2015.
- Li H, Qi Z, Zheng S, et al. The application of Hyaluronic acid-based hydrogels in bone and cartilage tissue engineering. Advances in Materials Science and Engineering. 2019; 2019:1-12. doi:https://doi.org/10.1155/2019/3027303.
- Larsen NE, Lombard KM, Parent EG, Balazs EA. Effect of hylan on cartilage and chondrocyte cultures. J Orthop Res. 1992; 10(1):23-32. doi: https://doi.org/10.1002/jor.1100100104.
- Oerther S, Le Gall H, Payan E, et al. Hyaluronate‐Alginate gel as a novel biomaterial: Mechanical properties and formation mechanism. Biotechnol Bioeng. 1999; 63(2):206-215. doi:https://doi.org/10.1002/ (SICI) 1097-0290.
- Antich C, de Vicente J, Jiménez G, et al. Bio-inspired hydrogel composed of Hyaluronic acid and Alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Acta Biomater. 2020; 106:114-123. doi:https://doi.org/10.1016/j.actbio.2020.01.046.
- Klemm D, Philpp B, Heinze T, Heinze U, Wagenknecht W, eds. Comprehensive Cellulose chemistry. Volume 1: Fundamentals and analytical methods. 1st Ed. Wiley-VCH Verlag GmbH; 1998.
- Sultan S, Siqueira G, Zimmermann T, Mathew AP. 3D printing of nano-cellulosic biomaterials for medical applications. Current Opinion in Biomedical Engineering. 2017; 2:29-34. doi:https://doi.org/10.1016/j.cobme.2017.06.002.
- Jacek P, Szustak M, Kubiak K, Gendaszewska-Darmach E, Ludwicka K, Bielecki S. Scaffolds for chondrogenic cells cultivation prepared from bacterial Cellulose with relaxed fibers structure induced genetically. Nanomaterials (Basel). 2018; 8(12):1066. doi:https://doi.org/10.3390/nano8121066.
- Janmohammadi M, Nazemi Z, Salehi AOM, et al. Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery. Bioact Mater. 2023; 20:137-163. doi:https://doi.org/10.1016/j.bioactmat.2022.05.018.
- Möller T, Amoroso M, Hägg D, et al. In vivo chondrogenesis in 3D bioprinted human cell-laden hydrogel constructs. Plast Reconstr Surg Glob Open.2017 Feb 15; 5(2):e1227. doi: 10.1097/GOX.0000000000001227.
|