The Current Role of Disease-modifying Osteoarthritis Drugs | ||
The Archives of Bone and Joint Surgery | ||
مقاله 2، دوره 11، شماره 1، فروردین 2023، صفحه 11-22 اصل مقاله (677.78 K) | ||
نوع مقاله: CURRENT CONCEPTS REVIEW | ||
شناسه دیجیتال (DOI): 10.22038/abjs.2021.56530.2807 | ||
نویسنده | ||
E. Carlos RODRIGUEZ-MERCHAN* | ||
Department of Orthopaedic Surgery, La Paz University Hospital, Madrid, Spain | ||
چکیده | ||
Contemporary treatments for osteoarthritis (OA) pursue only to alleviate the pain caused by the illness. Discovering disease-modifying osteoarthritis drugs (DMOADs) that can induce the repair and regeneration of articular tissues would be of substantial usefulness. The purpose of this manuscript is to review the contemporary role of DMOADs in managing OA. A narrative literature review on the subject, exploring the Cochrane Library and PubMed (MEDLINE) was performed. It was encountered that many publications have analyzed the impact of several DMOAD methods, including anti-cytokine therapy (tanezumab, AMG 108, adalimumab, etanercept, anakinra), enzyme inhibitors (M6495, doxycycline, cindunistat, PG-116800), growth factors (bone morphogenetic protein-7, sprifermin), gene therapy (micro ribonucleic acids, antisense oligonucleotides), peptides (calcitonin) and others (SM04690, senolitic, transient receptor potential vanilloid 4, neural EGFL-like 1, TPCA-1, tofacitinib, lorecivivint and quercitrin). Tanezumab has been demonstrated to alleviate hip and knee pain in individuals with OA but can cause major adverse events (osteonecrosis of the knee, rapid illness progression, augmented prevalence of total joint arthroplasty of involved joints, particularly when tanezumab is combined with nonsteroidal anti-inflammatory drugs. SM04690 (a Wnt inhibitor) has been demonstrated to be safe and efficacious in alleviating pain and ameliorating function as measured by the Western Ontario and McMaster Universities Arthritis Index. The intraarticular injection of lorecivivint is deemed safe and well tolerated, with no important reported systemic complications. In conclusion, even though DMOADs seem promising, their clinical effectiveness has not yet been demonstrated for managing OA. Until forthcoming studies can proved the medications’ capacity to repair and regenerate tissues affected by OA, physicians should keep using treatments that only intend to alleviate pain. Level of evidence: III | ||
کلیدواژهها | ||
Disease-modifying osteoarthritis drugs؛ Efficacy؛ Osteoarthritis؛ Treatment | ||
مراجع | ||
1. Bijlsma JW, Berenbaum F, Lafeber FP. Osteoarthritis: an update with relevance for clinical practice. Lancet. 2011; 377(9783):2115-2126. doi: 10.1016/S0140- 6736(11)60243-2. 2. Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet. 2019; 393(10182):1745-1759. doi: 10.1016/S0140- 6736(19)30417-9. 3. Falah M, Nierenberg G, Soudry M, Hayden M, Volpin G. Treatment of articular cartilage lesions of the knee. Int Orthop. 2010; 34(5):621-630. doi: 10.1007/ s00264-010-0959-y. 4. Ghouri A, Conaghan PG. Prospects for therapies in osteoarthritis. Calcif Tissue Int. 2021; 109(3):339- 350. doi: 10.1007/s00223-020-00672-9. 5. Latourte A, Kloppenburg M, Richette P. Emerging pharmaceutical therapies for osteoarthritis. Nat Rev Rheumatol. 2020; 16(12):673-688. doi: 10.1038/ s41584-020-00518-6. 6. Rodrigues TA, Freire AO, Bonfim BF, Cartágenes MSS, Garcí�a JBS. Strontium ranelate as a possible disease-modifying osteoarthritis drug: a systematic review. Braz J Med Biol Res. 2018; 51(8):e7440. doi: 10.1590/1414-431x20187440. 7. Gregori D, Giacovelli G, Minto C, et al. Association of pharmacological treatments with long-term pain control in patients with knee osteoarthritis: a systematic review and meta-analysis. JAMA. 2018; 320(24):2564-2579. doi: 10.1001/jama. 2018.19319. 8. Silva KM, de Sousa FL, Alves AC, et al. Chondroprotective effect of melatonin and strontium ranelate in animal model of osteoarthritis. Heliyon 2021; 7(4):e06760. doi: 10.1016/j.heliyon.2021.e06760. 9. Cai G, Aitken D, Laslett LL, et al. Effect of intravenous zoledronic acid on tibiofemoral cartilage volume among patients with knee osteoarthritis with bone marrow lesions: a randomized clinical trial. JAMA. 2020; 323(15):1456-1466. doi: 10.1001/ jama.2020.2938. 10.Vaysbrot EE, Osani MC, Musetti M-C, McAllindon TE, Bannuru RR. Are bisphosphonates efficacious in knee osteoarthritis? A meta-analysis of randomized controlled trials. Osteoarthritis Cartilage. 2018; 26(2):154-164. doi: 10.1016/j.joca.2017.11.013. 11.Salman A, Shabana AI, El-Ghazouly DE, Maha E. Protective effect of glucosamine and risedronate (alone or in combination) against osteoarthritic changes in rat experimental model of immobilized knee. Anat Cell Biol. 2019; 52(4):498-510. doi: 10.5115/acb.19.050. 12.Doschak MR, Wohl GR, Hanley DA, Bray RC, Zernicke RF. Antiresorptive therapy conserves some periarticular bone and ligament mechanical properties after anterior cruciate ligament disruption in the rabbit knee. J Orthop Res. 2004; 22:942–8. doi: 10.1016/j. orthres.2003.12.018. 13.Spector TD. Bisphosphonates: potential therapeutic agents for disease modification in osteoarthritis. Aging Clin Exp Res. 2003; 15:413–8. doi: 10.1007/ BF03327362. 14.Jones MD, Tran CW, Li G, Maksymowych WP, Zernicke RF, Doschak MR. In vivo microfocal computed tomography and micro-magnetic resonance imaging evaluation of antiresorptive and antiinflammatory drugs as preventive treatments of osteoarthritis in the rat. Arthritis Rheum. 2010; 62:2726–35. doi: 10.1002/art.27595. 15.Lane NE, Schnitzer TJ, Birbara CA, et al. Tanezumab for the treatment of pain from osteoarthritis of the knee. N Engl J Med 2010; 363(16):1521-1531. doi: 10.1056/NEJMoa0901510. 16.Schnitzer TJ, Lane NE, Birbara C. Long-term open-label study of tanezumab for moderate to severe osteoarthritic knee pain. Osteoarthritis Cartilage.2011; 19(6);639-646. doi: 10.1016/j. joca.2011.01.009. 17.Birbara C, Dabezies EJ, JR AM, et al. Safety and efficacy of subcutaneous tanezumab in patients with knee or hip osteoarthritis. J Pain Res 2018; 11:151-164. doi: 10.2147/JPR.S135257. 18.Schnitzer TJ, Easton R, Pang S, et al. Effect of Tanezumab on joint pain, physical function, and patient global assessment of osteoarthritis among patients with osteoarthritis of the hip or knee: a randomized clinical trial. JAMA 2019; 322(1):37-48. doi: 10.1001/jama.2019.8044. 19.Song GG, Lee YH. Relative efficacy and tolerability of 2.5, 5, and 10 mg tanezumab for the treatment of osteoarthritis: A Bayesian network meta-analysis of randomized controlled trials based on patient withdrawal. Int J Clin Pharmacol Ther 2021; 59(2):147-55. doi: 10.5414/CP203812. 20.Berenbaum F, Blanco FJ, Guermazi A, et al. Subcutaneous tanezumab for osteoarthritis of the hip or knee: efficacy and safety results from a 24-week randomised phase III study with a 24-week followup period. Ann Rheum Dis. 2020; 79(6):800-10. doi: 10.1136/annrheumdis-2019-216296. 21.Cohen SB, Proudman S, Kivitz A, et al. A randomized, double-blind study of AMG 108 (a fully human monoclonal antibody to IL-1R1) in patients with osteoarthritis of the knee. Arthrit Res Ther. 2011; 13(4):R125. doi: 10.1186/ar3430. 22.Wang J. Efficacy and safety of adalimumab by intraarticular injection for moderate to severe knee osteoarthritis: an open-label randomized controlled trial. J Int Med Res. 2018; 46(1):326-334. doi: 10.1177/0300060517723182. 23.Aitken D, Laslett LL, Pan F, et al. A randomised doubleblind placebo-controlled crossover trial of HUMira (adalimumab) for erosive hand OsteoaRthritis - the HUMOR trial. Osteoarthritis Cartilage. 2017; 26(7):880-887. doi: 10.1016/j.joca.2018.02.899. 24.Fleischmann RM, Bliddal H, Blanco FJ, et al. A phase II trial of lutikizumab, an anti-interleukin-1 alpha/ beta dual variable domain immunoglobulin, in knee osteoarthritis patients with synovitis. Arthrit Rheumatol 2019; 71(7):1056-1069. doi: 10.1002/ art.40840. 25.Kloppenburg M, Peterfy C, Haugen IK, et al. Phase IIa, placebo-controlled, randomised study of lutikizumab, an anti-interleukin-1alpha and anti-interleukin1beta dual variable domain immunoglobulin, in patients with erosive hand osteoarthritis. Ann Rheum Dis. 2019; 78(3):413-420. doi: 10.1136/ annrheumdis-2018-213336. 26.Schieker M, Conaghan PG, Mindeholm L, et al. Effects of interleukin-1β inhibition on incident hip and knee replacement: exploratory analyses from a randomized, double-Blind, placebo-controlled trial. Ann Intern Med. 2020; 173(7):509-515. doi: 10.7326/M20-0527. 27.Cheleschi S, Cantarini L, Pascarelli NA, et al. Possible chondroprotective effect of canakinumab: an in vitro study on human osteoarthritic chondrocytes. Cytokine 2015; 71(2):165-72. doi: 10.1016/j. cyto.2014.10.023. 28.Chevalier X, Goupille P, Beaulieu AD, et al. Intraarticular injection of anakinra in osteoarthritis of the knee: a multicenter, randomized, double-blind, placebocontrolled study. Arthrit Rheum. 2009; 61(3):344- 352. doi: 10.1002/art.24096. 29.Fischer JA, Hueber AJ, Wilson S, et al. combined inhibition of tumor necrosis factor alpha and interleukin-17 as a therapeutic opportunity in rheumatoid arthritis: development and characterization of a novel bispecific antibody. Arthrit Rheumatol. 2015; 67(1):51-62. doi: 10.1002/ art.38896. 30.Bigg H, Rowan AD. The inhibition of metalloproteinases as a therapeutic target in rheumatoid arthritis and osteoarthritis. Curr Opin Pharmacol. 2001; 1(3):314- 320. doi: 10.1016/s1471-4892(01)00055-8. 31.Lewis EJ, Bishop J, Bottomley KM, et al. Ro 32-3555, an orally active collagenase inhibitor, prevents cartilage breakdown in vitro and in vivo. Br J Pharmacol. 1997; 121(3):540-546. doi: 10.1038/sj.bjp.0701150. 32.Janusz MJ, Hookfin EB, Heitmeyer SA, et al. Moderation of iodoacetate-induced experimental osteoarthritis in rats by matrix metalloproteinase inhibitors. Osteoarthritis Cartilage. 2001; 9(8):751-760. doi: 10.1053/joca.2001.0472. 33.Chevalier X, Eymard F, Richette P. Biologic agents in osteoarthritis: hopes and Disappointments. Nat Rev Rheumatol. 2013; 9(7):400-410. doi: 10.1038/ nrrheum.2013.44. 34.Krzeski P, Buckland-Wright C, Balí�nt G, et al. Development of musculoskeletal toxicity without clear benefit after administration of PG-116800, a matrix metalloproteinase inhibitor, to patients with knee osteoarthritis: a randomized, 12-month, doubleblind, placebo controlled study. Arthrit Res Ther 2007; 9(5):R109. doi: 10.1186/ar2315. 35.le Graverand MP, Clemmer RS, Redifer P, et al. A 2-year randomised, double-blind, placebo controlled, multicentre study of oral selective iNOS inhibitor, cindunistat (SD- 6010), in patients with symptomatic osteoarthritis of the knee. Ann Rheum Dis. 2013; 72(2):187-195. doi: 10.1136/ annrheumdis-2012-202239. 36.Leff RL. Clinical trials of a stromelysin inhibitor. Osteoarthritis, matrix metalloproteinase inhibition, cartilage loss, surrogate markers, and clinical implications. Ann N Y Acad Sci. 1999; 878:201-207. doi: 10.1111/j.1749-6632.1999.tb07685.x. 37.Dahlberg L, Billinghurst RC, Manner P, et al. Selective enhancement of collagenase-mediated cleavage of resident type II collagen in cultured osteoarthritic cartilage and arrest with a synthetic inhibitor that spares collagenase 1 (matrix metalloproteinase 1). Arthrit Rheumat .2000; 43(3):673-682. doi: 10.1002/1529-0131(200003)43:3<673::AIDANR25>3.0.CO;2-8. 38.Johnson AR, Pavlovsky AG, Ortwine DF, et al. Discovery and characterization of a novel inhibitor of matrix metalloprotease-13 that reduces cartilage damage in vivo without joint fibroplasias side effects. J Biol Chem 2007; 282(38):27781-27791. doi: 10.1074/jbc. M703286200. 39.Baragi VM, Becher G, Bendele AM, et al. A new class of potent matrix metalloproteinase 13 inhibitors for potential treatment of osteoarthritis: evidence of histologic and clinical efficacy without musculoskeletal toxicity in rat models. Arthritis Rheum. 2009; 60(7):2008-2018. doi: 10.1002/ art.24629. 40.Wang MN, Sampson ER, Jin H, et al. MMP13 is a critical target gene during the progression of osteoarthritis. Arthrit Res Ther 2013; 15(1):R5. doi: 10.1186/ ar4133. 41.Siebuhr A, Werkmann D, Bay-Jensen AC, et al. The AntiADAMTS-5 Nanobody® M6495 Protects Cartilage Degradation Ex Vivo. Int J Mol Sci 2020; 21(17):5992. doi: 10.3390/ijms21175992. 42.Snijders GF, van den Ende CH, van Riel PL, van den Hoogen FH, den Broeder AA. The effects of doxycycline on reducing symptoms in knee osteoarthritis: results from a triple-blinded randomised controlled trial. Ann Rheum Dis. 2011; 70(7):1191-1196. doi: 10.1136/ ard.2010.147967. 43.Zhang X, Deng XH, Song Z, et al. Matrix Metalloproteinase Inhibition With Doxycycline Affects the Progression of Posttraumatic Osteoarthritis After Anterior Cruciate Ligament Rupture: Evaluation in a New Nonsurgical Murine ACL Rupture Model. Am J Sports Med. 2020; 48(1):143-152. doi: 10.1177/0363546519887158. 44.Hunter DJ, Pike MC, Jonas BL, Kissin E, Krop J, McAlindon T. Phase 1 safety and tolerability study of BMP-7 in symptomatic knee osteoarthritis. BMC Musculoskelet Disord. 2010; 11:232. doi: 10.1186/1471-2474-11-232. 45.Müller S, Lindemann S, Gigout A. Effects of sprifermin, IGF1, IGF2, BMP7, or CNP on bovine chondrocytes in monolayer and 3D culture. J Orthop Res 2020; 38(3):653-662. doi: 10.1002/jor.24491. 46.Lohmander LS, Hellot S, Dreher D, et al. Intraarticular sprifermin (recombinant human fibroblast growth factor 18) in knee osteoarthritis: a randomized, double-blind, placebo controlled trial. Arthrit Rheumatol 2014; 66(7):1820-1831. doi: 10.1002/ art.38614. 47.Li J, Wang X, Ruan G, Zhu Z, Ding C. Sprifermin: a recombinant human fibroblast growth factor 18 for the treatment of knee osteoarthritis. Expert Opin Investig Drugs 2021; 30(9):923-30. doi: 10.1080/13543784.2021.1972970. 48.Eckstein F, Hochberg MC, Guehring H, et al. Long-term structural and symptomatic effects of intra-articular sprifermin in patients with knee osteoarthritis: 5-year results from the FORWARD study. Ann Rheum Dis 2021; 80(8):1062-9. doi: 10.1136/ annrheumdis-2020-219181. 49.Madry H, Cucchiarini M. Gene therapy for human osteoarthritis: principles and clinical translation. Expert Opin Biol Ther 2016; 16(3):331-346. doi: 10.1517/14712598.2016.1124084. 50.Ham O, Song BW, Lee SY, et al. The role of microRNA23b in the differentiation of MSC into chondrocyte by targeting protein kinase A signaling. Biomaterials 2012;33(18):4500-4507. doi: 10.1016/j.biomaterials. 2012.03.025. 51.Matsukawa T, Sakai T, Yonezawa T, et al. MicroRNA125b regulates the expression of aggrecanase-1 (ADAMTS-4) in human osteoarthritic chondrocytes. Arthrit Res Ther 2013; 15(1):R28. doi: 10.1186/ ar4164. 52.Meng F, Zhang Z, Chen W, et al. MicroRNA-320 regulates matrix metalloproteinase-13 expression in chondrogenesis and interleukin-1beta-induced chondrocyte responses. Osteoarthritis Cartilage 2016; 24(5):932-941. doi: 10.1016/j.joca.2015.12.012. 53.Nakamura A, Rampersaud YR, Sharma A, et al. Identification of microRNA-181a-5p and microRNA-4454 as mediators of facet cartilage degeneration. JCI Insight 2016; 1(12):e86820. doi: 10.1172/jci.insight.86820. 54.Sondag GR, Haqqi TM. The role of MicroRNAs and their targets in osteoarthritis. Curr Rheumatol Rep 2016; 18(8):56. doi: 10.1007/s11926-016-0604-x. 55.Vonk LA, Kragten AH, Dhert WJ, Saris DBF, Creemers LB. Overexpression of hsa-miR-148a promotes cartilage production and inhibits cartilage degradation by osteoarthritic chondrocytes. Osteoarthritis Cartilage 2014; 22(1):145-153. doi: 10.1016/j.joca.2013.11.006. 56.Tuddenham L, Wheeler G, Ntounia-Fousara N, et al. The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett 2006; 580(17):4214–4217. doi: 10.1016/j. febslet.2006.06.080. 57.Miyaki S, Sato T, Inoue A, et al. MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev 2010; 24(11):1173-1185. doi: 10.1101/gad.1915510. 58.Karlsen TA, de Souza GA, Odegaard B, Engebretsen L, Brinchmann JE. MicroRNA-140 inhibits inflammation and stimulates chondrogenesis in a model of interleukin 1beta-induced osteoarthritis. Mol Ther Nucleic Acids 2016; 5(10):e373. doi: 10.1038/ mtna.2016.64. 59.Si HB, Zeng Y, Liu SY, et al. Intra-articular injection of microRNA-140 (miRNA-140) alleviates osteoarthritis (OA) progression by modulating extracellular matrix (ECM) homeostasis in rats. Osteoarthritis Cartilage 2017; 25(10):1698-1707. doi: 10.1016/j. joca.2017.06.002. 60.Wijesinghe SN, Lindsay MA, Jones SW. Oligonucleotide therapies in the treatment of arthritis: a narrative review. Biomedicines 2021; 9(8):902. doi: 10.3390/ biomedicines9080902. 61.El Hajjaji H, Williams JM, Devogelaer JP, Lenz ME, Eugene JM, Manicourt DH. Treatment with calcitonin prevents the net loss of collagen, hyaluronan and proteoglycan aggregates from cartilage in the early stages of canine experimental osteoarthritis. Osteoarthritis Cartilage 2004; 12(11):904-911. doi: 10.1016/j.joca.2004.08.005. 62.Karsdal MA, Byrjalsen I, Henriksen K, et al. The effect of oral salmon calcitonin delivered with 5-CNAC on bone and cartilage degradation in osteoarthritic patients: a 14-day randomized study. Osteoarthritis Cartilage 2010; 18(2):150-159. doi: 10.1016/j. joca.2009.08.004. 63.Karsdal MA, Byrjalsen I, Alexandersen P, et al. Treatment of symptomatic knee osteoarthritis with oral salmon calcitonin: results from two phase 3 trials. Osteoarthritis Cartilage 2015; 23(4):532-543. doi: 10.1016/j.joca.2014.12.019. 64.Stöckl S, Eitner A, Bauer RJ, König M, Johnstone B, Grässel S. Substance P and alpha-calcitonin gene-related peptide differentially affect human osteoarthritic and healthy chondrocytes. Front Immunol 2021; 12:722884. doi: 10.3389/ fimmu.2021.722884 65.Goldring MB, Berenbaum F. Emerging targets in osteoarthritis therapy. Curr Opin Pharmacol 2015; 22:51-63. doi: 10.1016/j.coph.2015.03.004. 66.Wang Y, Fan X, Xing L, Tian F. Wnt signaling: A promising target for osteoarthritis therapy. Cell Commun Signal 2019; 17(1):97. doi: 10.1186/s12964-019-0411-x. 67.Yazici Y, McAlindon TE, Fleichsmann R, et al. A novel Wnt pathway inhibitor, SM04690, for the treatment of moderate to severe osteoarthritis of the knee: results of a 24-week, randomized, controlled, phase 1 study. Osteoarthritis Cartilage 2017; 25(10):1598-1606. doi: 10.1016/j.joca.2017.07.006. 68.Childs BG, Gluscevic M, Baker DJ, et al. Senescent cells: an emerging target for diseases of ageing. Nat Rev Drug Discov 2017; 16(10):718-735. doi: 10.1038/ nrd.2017.116. 69.Jeon OH, Kim C, Laberge RM, et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a proregenerative environment. Nat Med 2017; 23(6):775- 781. doi: 10.1038/nm.4324. 70.Deursen JM. Senolytic therapies for healthy longevity. Science .2019; 364(6441):636-637. doi: 10.1126/ science.aaw1299. 71.Atobe M. Activation of transient receptor potential vanilloid (TRPV) 4 as a therapeutic strategy in osteoarthritis. Curr Top Med Chem 2019; 19(24):2254-2267. doi: 10.2174/156802661966619 1010162850. 72.Li C, Zheng Z, Ha P, et al. Neural EGFL like 1 as a potential pro-chondrogenic, anti-inflammatory dualfunctional disease-modifying osteoarthritis drug. Biomaterials 2020; 226:119541. doi: 10.1016/j. biomaterials.2019.119541. 73.Kjelgaard-Petersen CF, Sharma N, Kayed A, et al. Tofacitinib and TPCA-1 exert chondroprotective effects on extracellular matrix turnover in bovine articular cartilage ex vivo. Biochem Pharmacol 2019; 165:91-98. doi: 10.1016/j.bcp.2018.07.034. 74.Sabha M, Siaton BC, Hochberg MC. Lorecivivint, an intra-articular potential disease-modifying osteoarthritis drug. Expert Opin Investig Drugs 2020; 29(12):1339-1346. doi: 10.1080/ 13543784.2020.1842357. 75.Yazici Y, McAlindon TE, Gibofsky A, et al. A Phase 2b randomized trial of lorecivivint, a novel intra-articular CLK2/DYRK1A inhibitor and Wnt pathway modulator for knee osteoarthritis. Osteoarthritis Cartilage 2021; S1063-4584(21)00040-6. doi: 10.1016/j. joca.2021.02.004. 76.Guo H, Yin W, Zou Z, et al. Quercitrin alleviates cartilage extracellular matrix degradation and delays ACLT rat osteoarthritis development: An in vivo and in vitro study. J Adv Res 2020; 28:255-267. doi: 10.1016/j. jare.2020.06.020. 77.77. Evans CH, Kraus VB, Setton LA. Progress in intraarticular therapy. Nat Rev Rheumatol 2014; 10(1):11- 22. doi: 10.1038/nrrheum.2013.159. 78.Liggins RT, Cruz T, Min W, Liang L, Hunter WL, Burt HM. Intra-articular treatment of arthritis with microsphere formulations of paclitaxel: biocompatibility and efficacy determinations in rabbits. Inflamm Res 2004; 53(8):363-372. doi: 10.1007/s00011-004-1273-1. 79.Colella F, Garcia JP, Sorbona M, et al. Drug delivery in intervertebral disc degeneration and osteoarthritis: Selecting the optimal platform for the delivery of disease-modifying agents. J Control Release 2020; 328:985-999. doi: 10.1016/j.jconrel.2020.08.041. 80.Rothenfluh DA, Bermudez H, O’Neil CP, Hubbell JA. Biofunctional polymer Nanoparticles for intraarticular targeting and retention in cartilage. Nat Mater 2008; 7(3):248-254. doi: 10.1038/nmat2116. 81.Bajpayee AG, Wong CR, Bawendi MG, Frank EH, Grodzinski AJ. Avidin as a model for charge driven transport into cartilage and drug delivery for treating early stage post-traumatic osteoarthritis. Biomaterials 2014; 35(1):538-549. doi: 10.1016/j. biomaterials.2013.09.091. 82.Bajpayee AG, Scheu M, Grodzinsky AJ, Porter RM. Electrostatic interactions enable rapid penetration, enhanced uptake and retention of intra-articular injected avidin in rat knee joints. J Orthop Res 2014; 32(8):1044-1051. doi: 10.1002/jor.22630. 83.Bajpayee AG, Quadir MA, Hammond PT, Grodzinski AJ. Charge based intracartilage delivery of single dose dexamethasone using Avidin nano-carriers suppresses cytokine-induced catabolism long term. Osteoarthritis Cartiage 2016; 24(1):71-81. doi: 10.1016/j.joca.2015.07.010. 84.Geiger BC, Wang S, Padera Jr RF, Grodzinski AJ, Hammond PT. Cartilage penetrating nanocarriers improve delivery and efficacy of growth factor treatment of osteoarthritis. Sci Transl Med 2018; 10(469):eaat8800. doi: 10.1126/scitranslmed. aat8800. 85.Matsuzaki T, Matsushita T, Tabata Y, et al. Intraarticular administration of gelatin hydrogels incorporating rapamycin-micelles reduces the development of experimental osteoarthritis in a murine model. Biomaterials 2014; 35(37):9904- 9911. doi: 10.1016/j.biomaterials.2014.08.041. 86.Kang ML, Jeong SY, Im GI. Hyaluronic acid hydrogel functionalized with self-assembled micelles of amphiphilic PEGylated kartogenin for the treatment of osteoarthritis. Tissue Eng Part A 2017; 23(13- 14):630-639. doi: 10.1089/ten.tea.2016.0524. 87.Elron-Gross I, Glucksam Y, Margalit R. Liposomal dexamethasone-diclofenac combinations for local osteoarthritis treatment. Int J Pharm 2009; 376(1- 2):84-91. doi: 10.1016/j.ijpharm.2009.04.025. 88.Elron-Gross I, Glucksam Y, Melikhov D, Margalit R. Cyclooxygenase inhibition by diclofenac formulated in bioadhesive carriers. Biochim Biophys Acta 2008; 1778(4):931-936. doi: 10.1016/j. bbamem.2008.01.002. 89.Lu HT, Sheu MT, Lin YF, et al. Injectable hyaluronicacid-doxycycline hydrogel therapy in experimental rabbit osteoarthritis. BMC Vet Res 2013; 9:68. doi: 10.1186/1746-6148-9-68. 90.Sandker MJ, Petit A, Redout EM, et al. In situ forming acyl-capped PCLA-PEG-PCLA triblock copolymer based hydrogels. Biomaterials 2013; 34(32):8002-8011. doi: 10.1016/j.biomaterials.2013.07.046. 91.Lolli A, Sivasubramaniyan K, Vainieri ML, et al. Hydrogel-based delivery of antimiR-221 enhances cartilage regeneration by endogenous cells. J Control Release 2019; 309:220-230. doi: 10.1016/j. jconrel.2019.07.040. 92.Yu Y, Brouillette MJ, Seol D, et al. Use of recombinant human stromal cell-derived factor 1alpha-loaded fibrin/hyaluronic acid hydrogel networks to achieve functional repair of full thickness bovine articular cartilage via homing of chondrogenic progenitor cells. Arthrit Rheumatol 2015; 67(5):1274-1285. doi: 10.1002/art.39049. 93.Lee CH, Cook JL, Mendelson A, et al. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet 2010; 376(9739):440-448. doi: 10.1016/S0140- 6736(10)60668-X. 94.Hochberg MC. Osteoarthritis year 2012 in review: clinical. Osteoarthritis Cartilage 2012; 20(12):1465- 1469. doi: 10.1016/j.joca.2012.07.022. 95.Hochberg MC, Altman RD, April KT, et al., American College of Rheumatology 2012 recommendations for the use of nonpharmacologic and pharmacologic therapies in osteoarthritis of the hand, hip, and knee. Arthritis Care Res. (Hoboken) 2012; 64(4):465-474. doi: 10.1002/acr.21596. 96.Jordan KM, Arden NK, Doherty M, et al. EULAR recommendations 2003: an evidence based approach to the management of knee osteoarthritis: report of a task force of the Standing Committee for International Clinical Studies Including Therapeutic Trials (ESCISIT). Ann Rheum Dis 2003; 62(12):1145- 1155. doi: 10.1136/ard.2003.011742. 97.Miceli-Richard C, Le Bars M, Schmidely N, Dougados M. Paracetamol in osteoarthritis of the knee. Ann Rheum Dis 2004; 63(8):923-930. doi: 10.1136/ ard.2003.017236. 98.Zhang W, Moskowitz RW, Nuki G, et al. OARSI recommendations for the management of hip and knee osteoarthritis, part II: OARSI evidencebased, expert consensus guidelines. Osteoarthritis Cartilage 2008; 16(2):137-162. doi: 10.1016/j. joca.2007.12.013. 99.Kang ML, Im GI. Drug delivery systems for intraarticular treatment of osteoarthritis. Expert Opin Drug Deliv 2014; 11(2):269-282. doi: 10.1517/17425247.2014.867325. 100. Laine L, White WB, Rostom A, Hochberg M. COX-2 selective inhibitors in the treatment of osteoarthritis. Semin Arthritis Rheum 2008; 38(3):165-187. doi: 10.1016/j.semarthrit.2007.10.004. 101. Sostres C, Gargallo CJ, Arroyo MT, Lanas A. Adverse effects of non-steroidal anti-inflammatory drugs (NSAIDs, aspirin and coxibs) on upper gastrointestinal tract. Best Pract Res Clin Gastroenterol 2010; 24(2):121-32. doi: 10.1016/j.bpg.2009.11.005. 102. Laine L. Gastrointestinal effects of NSAIDs and coxibs. J Pain Symptom Manage 2003; 25(2 Suppl):S32-40. doi: 10.1016/s0885-3924 (02)00629-2. 103. Bijlsma JWJ, Berenbaum F, Lafeber FPJG. Osteoarthritis: an update with relevance for clinical practice. Lancet 2011; 377(9783):2115-2126. doi: 10.1016/S0140-6736(11)60243-2. 104. Von Korff M, Deyo RA. Potent opioids for chronic musculoskeletal pain: flying blind? Pain 2004; 109(3):207-209. doi: 10.1016/j.pain.2004.02.019. 105. Bellamy N, Campbell J, Robinson V, Gee T, Bourne R, Wells G. Intraarticular corticosteroid for treatment of osteoarthritis of the knee. Cochrane Database Syst Rev. 2005 ;( 2):CD005328. doi: 10.1002/14651858. CD005328. 106. Gerwin N, Hops C, Lucke A. Intraarticular drug delivery in osteoarthritis. Adv Drug Deliv Rev 2006; 58(2):226-242. doi: 10.1016/j.addr.2006.01.018. 107. Adams ME, Lussier AJ, Peyron JG. A riskbenefit assessment of injections of hyaluronan and its derivatives in the treatment of osteoarthritis of the knee. Drug Saf 2000; 23(2):115-130. doi: 10.2165/00002018-200023020-00003. 108. Andia I, Maffulli N. Platelet-rich plasma for managing pain and inflammation in osteoarthritis. Nat Rev Rheumatol 2013; 9(12):721-730. doi: 10.1038/nrrheum.2013.141. 109. O’Connell B, Wragg NM, Wilson SL. The use of PRP injections in the management of knee osteoarthritis. Cell Tissue Res 2019; 376(2):143-152. doi: 10.1007/ s00441-019-02996-x. 110. Han Y, Huang H, Pan J, et al. Meta-analysis comparing platelet-rich plasma vs hyaluronic acid injection in patients with knee osteoarthritis. Pain Med 2019; 20(7):1418-1429. doi: 10.1093/pm/ pnz011. 111. Jansen MP, Besselink NJ, van Heerwaarden RJ, et al. Knee joint distraction compared with high tibial osteotomy and total knee arthroplasty: two-year clinical, radiographic, and biochemical marker outcomes of two randomized controlled trials. Cartilage 2021; 12(2):181-191. doi: 10.1177/1947603519828432. 112. Jansen MP, Maschek S, van Heerwaarden RJ, et al. Changes in cartilage thickness and denuded bone area after knee joint distraction and high tibial osteotomy-post-hoc analyses of two randomized controlled trials. J Clin Med 2021; 10(2):368. doi: 10.3390/jcm10020368. 113. Goldring MB, Berenbaum F. Emerging targets in osteoarthritis therapy. Curr Opin Pharmacol 2015; 22:51-63. doi: 10.1016/j.coph.2015.03.004. 114. Tonge DP, Pearson MJ, Jones SW. The hallmarks of osteoarthritis and the potential to develop personalised disease-modifying pharmacological therapeutics. Osteoarthritis Cartilage 2014; 22(5):609-621. doi: 10.1016/j.joca.2014.03.004. 115. Matthews GL, Hunter DJ. Emerging drugs for osteoarthritis. Expert Opin Emerg Drugs 2011;16(3):479-491. doi: 10.1517/14728214.2011. 576670. 116. Pelletier JP, Martel-Pelletier J, Raynauld JP. Most recent developments in strategies to reduce the progression of structural changes in osteoarthritis: today and tomorrow. Arthritis Res Ther 2006; 8(2):206. doi: 10.1186/ar1932. 117. Oo WM, Little C, Duong V, Hunter DJ. The development of disease-modifying therapies for osteoarthritis (DMOADs): the evidence to date. Drug Des Devel Ther 2021; 15:2921-45. doi: 10.2147/ DDDT.S295224. | ||
آمار تعداد مشاهده مقاله: 1,713 تعداد دریافت فایل اصل مقاله: 1,431 |