- Deschenes, M. R., Tufts, H. L., Noronha, A. L., & Li, S. (2019). Both aging and exercise training alter the rate of recovery of neuromuscular performance of male soleus muscles. Biogerontology, 20(2), 213-223. doi: 10.1007/s10522-018-9788-y
- Wilson, R. J., Drake, J. C., Cui, D., Ritger, M. L., Guan, Y., Call, J. A., . . . Yan, Z. (2019). Voluntary running protects against neuromuscular dysfunction following hindlimb ischemia-reperfusion in mice. Journal of applied physiology, 126(1), 193-201. doi: 10.1152/japplphysiol.00358.2018
- Guarino, S. R., Canciani, A., & Forneris, F. (2019). Dissecting the Extracellular Complexity of Neuromuscular Junction Organizers. Frontiers in molecular biosciences, 6, 156. doi: 10.3389/fmolb.2019.00156
- Popper, P., & Micevych, P. E. (1989). Localization of calcitonin gene-related peptide and its receptors in a striated muscle. Brain Research, 496(1-2), 180-186. doi: 10.1016/0006-8993(89)91064-0
- Amara, S. G., Jonas, V., Rosenfeld, M. G., Ong, E. S., & Evans, R. M. (1982). Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature, 298(5871), 240-244. doi: 10.1038/298240a0
- Brain, S. D., Williams, T. J., Tippins, J. R., Morris, H. R., & MacIntyre, I. (1985). Calcitonin gene-related peptide is a potent vasodilator. Nature, 313(5997), 54-56. doi: 10.1038/313054a0
- Russell, F. A., King, R., Smillie, S. J., Kodji, X., & Brain, S. D. (2014). Calcitonin gene-related peptide: physiology and pathophysiology. Physiological reviews, 94(4), 1099-1142. doi: 10.1152/physrev.00034.2013
- Fernandez, H. L., Ross, G. S., & Nadelhaft, I. (1999). Neurogenic calcitonin gene-related peptide: a neurotrophic factor in the maintenance of acetylcholinesterase molecular forms in adult skeletal muscles. Brain research, 844(1-2), 83-97. doi: 10.1016/s0006-8993(99)01891-0
- Dickerson, I. M. (2013). Role of CGRP-receptor component protein (RCP) in CLR/RAMP function. Current protein & peptide science, 14(5), 407-415. doi: 10.2174/13892037113149990057
- Calderó, J., Casanovas, A., Sorribas, A., & Esquerda, J. E. (1992). Calcitonin gene-related peptide in rat spinal cord motoneurons: subcellular distribution and changes induced by axotomy. Neuroscience, 48(2), 449-461. doi: 10.1016/0306-4522(92)90504-u
- Gharakhanlou, R., Chadan, S., & Gardiner, P. (1999). Increased activity in the form of endurance training increases calcitonin gene-related peptide content in lumbar motoneuron cell bodies and in sciatic nerve in the rat. Neuroscience, 89(4), 1229-1239. doi: 10.1016/s0306-4522(98)00406-0
- Evans, B. N., Rosenblatt, M. I., Mnayer, L. O., Oliver, K. R., & Dickerson, I. M. (2000). CGRP-RCP, a Novel Protein Required for Signal Transduction at Calcitonin Gene-related Peptide and Adrenomedullin Receptors*. Journal of Biological Chemistry, 275(40), 31438-31443. doi: https://doi.org/10.1074/jbc.M005604200
- Prado, M. A., Evans-Bain, B., Oliver, K. R., & Dickerson, I. M. (2001). The role of the CGRP-receptor component protein (RCP) in adrenomedullin receptor signal transduction. Peptides, 22(11), 1773-1781. doi: 10.1016/s0196-9781(01)00517-4
- Parnow, A., Gharakhanlou, R., Gorginkaraji, Z., Rajabi, S., Eslami, R., Hedayati, M., & Mahdian, R. (2012). Effects of endurance and resistance training on calcitonin gene-related Peptide and acetylcholine receptor at slow and fast twitch skeletal muscles and sciatic nerve in male wistar rats. International journal of peptides, 2012, 962651. doi: 10.1155/2012/962651
- Milanović, Z., Sporiš, G., & Weston, M. (2015). Effectiveness of High-Intensity Interval Training (HIT) and Continuous Endurance Training for VO2max Improvements: A Systematic Review and Meta-Analysis of Controlled Trials. Sports medicine, 45(10), 1469-1481. doi: 10.1007/s40279-015-0365-0
- Polomoshnov, D. (2017). Acute HIT session induced changes and recovery in muscle activation level, voluntary force production and jump performance during 8 weeks of HIT training in recreationally endurance trained men. University of Jyväskylä, JYX Digital Repository. Retrieved from http://urn.fi/URN:NBN:fi:jyu-201701101120
- Gibala, M. J., & McGee, S. L. (2008). Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain? Exercise and sport sciences reviews, 36(2), 58-63. doi: 10.1097/JES.0b013e318168ec1f
- Rognmo, Ø., Hetland, E., Helgerud, J., Hoff, J., & Slørdahl, S. A. (2004). High intensity aerobic interval exercise is superior to moderate intensity exercise for increasing aerobic capacity in patients with coronary artery disease. European journal of cardiovascular prevention and rehabilitation, 11(3), 216-222. doi: 10.1097/01.hjr.0000131677.96762.0c
- Warburton, D. E., McKenzie, D. C., Haykowsky, M. J., Taylor, A., Shoemaker, P., Ignaszewski, A. P., & Chan, S. Y. (2005). Effectiveness of high-intensity interval training for the rehabilitation of patients with coronary artery disease. The American journal of cardiology, 95(9), 1080-1084. doi: 10.1016/j.amjcard.2004.12.063
- Bartlett, J. D., Close, G. L., MacLaren, D. P., Gregson, W., Drust, B., & Morton, J. P. (2011). High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: implications for exercise adherence. Journal of sports sciences, 29(6), 547-553. doi: 10.1080/02640414.2010.545427
- Volek, J. S., Kraemer, W. J., Bush, J. A., Boetes, M., Incledon, T., Clark, K. L., & Lynch, J. M. (1997). Creatine supplementation enhances muscular performance during high-intensity resistance exercise. Journal of the American Dietetic Association, 97(7), 765-770. doi: 10.1016/s0002-8223(97)00189-2
- Babraj, J. A., Vollaard, N. B. J., Keast, C., Guppy, F. M., Cottrell, G., & Timmons, J. A. (2009). Extremely short duration high intensity interval training substantially improves insulin action in young healthy males. BMC Endocrine Disorders, 9(1), 3. doi: 10.1186/1472-6823-9-3
- Kazemi, A., & Barbat, S. (2019). The Effect of High Intensity Interval Training on Gene Expression of MuRF1 and TRAF6 in Extensor Digitorum Longus (EDL) Muscle of Aged Mice. Journal of Sport Biosciences, 11(2), 225-237. doi: 10.22059/jsb.2019.262132.1297 [Persian]
- Esfarjani, F., marandi, M., & Moradi, H. a. (2019). The effect of different training intensities and consequent detraining on levels of sarcolipin and phospholamban in fast-twitch and slow-twitch muscles of male wistar rats. Studies in Medical Sciences, 30(8), 609-620. [Persian]
- Thomas, C., Bishop, D., Moore-Morris, T., & Mercier, J. (2007). Effects of high-intensity training on MCT1, MCT4, and NBC expressions in rat skeletal muscles: influence of chronic metabolic alkalosis. American journal of physiology Endocrinology and metabolism, 293(4), E916-922. doi: 10.1152/ajpendo.00164.2007
- khorshidvand, m., Ghara khanlou, R., & hassan sajedi, r. (2019). The Effect of Moderate Continuous Training on TRPV1 Protein Expression in Slow-Contraction Muscles of Wistar Rats. Journal of Sport Biosciences, 11(1), 83-96. doi: 10.22059/jsb.2019.269023.1319 [Persian]
- Gorzi, A., Rajabi, H., Gharakhanlou, R., & azad, A. (2013). Effects of Endurance Training on A12 Acetyl Cholinesterase Activity in Fast and Slow-Twitch Skeletal Muscles of Male Wistar Rats. Zahedan journal of research in medical sciences, 15(10), e92827. [Persian]
- Nishimune, H., Stanford, J. A., & Mori, Y. (2014). Role of exercise in maintaining the integrity of the neuromuscular junction. Muscle & nerve, 49(3), 315-324. doi: 10.1002/mus.24095
- Blanco, C. E., Popper, P., & Micevych, P. (1997). α-CGRP mRNA levels in motoneurons innervating specific rat muscles. Molecular Brain Research, 44(2), 253-261. doi: https://doi.org/10.1016/S0169-328X(96)00227-6
- Rosenfeld, M. G., Mermod, J. J., Amara, S. G., Swanson, L. W., Sawchenko, P. E., Rivier, J., . . . Evans, R. M. (1983). Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature, 304(5922), 129-135. doi: 10.1038/304129a0
- Fagerlund, M. J., & Eriksson, L. I. (2009). Current concepts in neuromuscular transmission. British Journal of Anaesthesia, 103(1), 108-114. doi: 10.1093/bja/aep150
- Homonko, D. A., & Theriault, E. (1997). Calcitonin gene-related peptide is increased in hindlimb motoneurons after exercise. International journal of sports medicine, 18(7), 503-509. doi: 10.1055/s-2007-972672
|