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Objective(s): Diabetes mellitus (DM) affects the pharmacokinetics of drugs. Ranolazine is an 
antianginal drug that is prescribed in DM patients with angina. We decided to evaluate the effect of 
DM on the pharmacokinetics of ranolazine and its major metabolite CVT-2738 in rats.
Materials and Methods: Male rats were divided into two groups: DM (induced by 55 mg/kg 
Streptozotocin (STZ)) and non-DM. All animals were treated with 80 mg/kg of ranolazine for 7 
continuous days. The blood samples were collected immediately at 0 (prior to dosing), 1, 2, 3, 4, 
8, and 12 hr after administration of the 7th dose of ranolazine. Serum ranolazine and CVT-2738 
concentrations were determined using the high-performance liquid chromatography (HPLC) method. 
Pharmacokinetic parameters were calculated using a non-compartmental model and compared 
between the two groups.
Results: The peak serum concentration (Cmax) and area under the curve (AUC) of ranolazine 
significantly decreased in DM compared with non-DM rats. DM rats showed significantly higher 
volumes of distribution (Vd) and clearance (CL) of ranolazine than non-DM rats. DM did not affect 
Ke, Tmax, and T1/2 of ranolazine. The concentration of metabolite was lower than the HPLC limit of 
detection (LOD).
Conclusion: It was found that streptozotocin-induced DM increased Vd and CL of ranolazine, thereby 
decreasing the AUC of the drug. Therefore, dosage adjustment may be necessary for DM patients, 
which requires further clinical studies.
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Introduction
Diabetes mellitus (DM) as a growing healthcare challenge 

can affect the pharmacokinetics and pharmacodynamics of 
medications (1-3). Previous reports have shown that DM 
alters several physiological processes in humans, including 
micro-and macro vasculature, gastric mucosal blood flow, 
parasympathetic function, and intestinal hormone activity, 
which can affect the absorption of drugs (4-6). Moreover, 
poorly controlled blood glucose can cause gastropathy 
and changes in gastrointestinal pH. It ultimately leads to 
delays in gastric emptying, alterations in the lipophilicity 
of drugs, and decreased drug absorption (6, 7). Plasma 
protein binding of various drugs can change due to the 
modification in glycosylation of proteins after exceeding 
the produced plasma free fatty acids in the DM state (8). 
DM decreases vascular permeability through microvascular 
disorders (8). Previous clinical and experimental studies 
have revealed that DM impacts the CYP450 enzyme 
activity, but the findings have been inconsistent and 

contradictory (1, 9). It has been reported that the expression 
and function of CYP3A4 are diminished in DM subjects 
(9). Nevertheless, experimental studies have reported the 
suppression of microsomal N‐demethylase action and 
raised or even reduced levels of CYP450 enzymes. DM 
affects metabolism mainly by mechanisms such as increased 
reactive oxygen species (ROS) and oxidative stress (10). By 
affecting angiotensin‐converting enzymes and micro‐ and 
macro vascular structure of the kidney, DM can alter the 
renal elimination of drugs. These changes may impair drug 
delivery to relevant tissues and contribute to nephropathy 
development (8, 11).

Ranolazine is an anti-ischemic and antianginal drug that 
is indicated for decreasing the symptoms of chronic stable 
angina pectoris, myocardial infarction, and mortality rate in 
DM patients with ischemic heart disease (12).

The oral bioavailability of ranolazine is 30–50% (13) and 
for Ranexa® tablets reaches 76% (14). Maximum (or peak) 
plasma concentrations of ranolazine are normally reached 
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within 1 hour. The steady-state concentrations will typically 
be achieved within 3 days after oral administration. 
Ranolazine binds to α-1-acid glycoprotein in the blood. 
Although the elimination half-life of pure ranolazine is 1.4 
to 1.9 hr, for sustained-release tablet formulation (ranolazine 
SR) it is about 7 hr. This half-life prolongation is because of 
the flip-flop kinetics of the SR preparation (15). 

Ranolazine is particularly metabolized by cytochrome 
P450 3A4 (CYP3A4; 70-75%) enzymes and to a lesser 
extent by CYP2D6 (less than 20%). The main metabolites 
of ranolazine are created through N-dealkylation 
of the piperidine ring (CVT-2738 and CVT-4786), 
O-demethylation (CVT-2514), methoxyphenoxy moiety 
O-dearylation (CVT-2512), and conjugation with 
glucuronide (CVT-5431). Consequently, 5% of ranolazine is 
excreted unaltered through the kidney (12, 16, 17) (Figure 
1). Additionally, P-glycoprotein (P-gp) plays an important 
role in the reabsorption of ranolazine (18).

Since DM is known to affect the pharmacokinetics of 
drugs; the pharmacokinetics of ranolazine may also be 
altered in DM conditions, which will necessitate proper 
dose adjustment. For this reason, we decided to compare 
the pharmacokinetics of this drug and its metabolite CVT-
2738 in DM and non-DM rats for the first time.

Materials and Methods
Ranolazine (Ranexa® 500 mg, C24H33N3O4) was 

obtained from A. Menarini Pharma (UK) Company. 
The standard working of ranolazine and CVT-2738 
(1-[(2,6-dimethylphenyl) aminocarbonylmethyl] Piperazine; 
C14H21N3O) was provided by Tinab Shimi Company 
(Mashhad, Iran). Acetonitrile gradient grade (CH₃CN, ≥ 
99.9 % purity; CAT. No. 100030), Methanol gradient grade 
(CH₃OH, ≥ 99.9 %; CAT. No. 106007), Diethyl ether (C₄H₁₀O, 
≥ 99.7 %; CAT. No. 100921), and Ortho-Phosphoric acid 
(H3PO4, 85%; CAT. No. 100573) were purchased from Merck 
Company (Rotexmeica, Germany). Potassium didrohygen 
phosphate (KH2PO4, >99.5%; CAT. No. CL00.1146) was 
obtained from Chem-Lab Company (Zedelgem, Belgium). 
Deionized water was used in the analytical experiment. 
Moreover, other solvents and chemicals used in the present 
study were of analytical grade. 

Experimental animals
Male rats (Wistar strain; 260–300 g) were ordered 

from Mashhad University of Medical Sciences, School of 
Pharmacy, Iran, Mashhad. The animals were housed in 
husk-filled polycarbonate plastic cages (25 ×15 × 40 cm), 

in a regular 24-hr interval and controlled light-dark cycle 
(12 hr-12 hr), temperature (21 ± 2 °C) circumstances. They 
freely had access to fresh water and a standard rodent chow 
diet (Behparvar Co, Karaj, Iran). 

In vivo preclinical pharmacokinetic analyses
The male Wistar rats were divided into two groups: DM 

and non-DM. On day 0, the non-DM group was treated 
with an intraperitoneal (IP) injection of normal saline; and 
DM animals after 10 hr fasting received an IP injection of 
55 mg/kg STZ in normal saline (19). Plenty of water was 
available for the animals to prevent dehydration. The blood 
glucose at 72 hr after STZ injection was checked by Easy 
Gluco (Germany) and AccuCheck glucometer (Per forma, 
Roche, USA). Any animal having FBS over 250 mg/dl was 
considered diabetic (20).

The DM and non-DM rats since day 10 after STZ or normal 
saline injection received 80 mg/kg ranolazine (oral; once a 
day) dissolved in normal saline (freshly prepared daily) for 
7 days. Blood samples were collected immediately 0 (prior to 
dosing), 1, 2, 3, 4, 8, and 12 hr after administration of the 7th 
dose of ranolazine. Six rats were used for every time point. 
The animals were sedated and the blood via retro-orbital 
plexus was collected. The serum was separated and stored at 
−80 °C until the extraction phase of ranolazine.

HPLC method
Chromatographic conditions

HPLC (A Shimadzu Prominence LC-20AD Liquid 
Chromatograph), an SPD-20A variable wavelength 
programmable UV/Vis detector, a CBM-20Alite system 
controller (Shimadzu Corporation, Gangnam-gu, Seoul, 
Korea). The analytical RP-C-18 column (Adamas® C18-
Extreme; 5 µm, 250 mm x 4.6 mmID) was used in 
chromatography. The mobile phase consisted of phase 
A (phosphate buffer (pH = 2.2; 20 mM)) and phase B 
(acetonitrile); the pH was set up by ortho-phosphoric acid (1 
mol/l). The gradient elution method was used as described in 
Table 1. The run time was adjusted to 16 min and the peak area 
of the samples was recorded by the Lab Solution Software. 
During the mobile phase preparation steps, the solvents were 
passed through a membrane filter and ultrasonically degassed 
before use. In all steps of the present experiment, the mobile 
phase was moved through the column at a flow rate of 1 ml/
min and 40 °C. The UV detector at 214 nm was utilized. In 
each run, 20 µl of samples were injected.

Method validation
Linearity, precision, accuracy, the limit of detection 

(LOD), and limit of quantitation (LOQ) of the method were 
estimated according to the ICH Q2 (R1) guideline “validation 
and analytical procedures: text and methodology” (21). 

Figure 1.  Metabolism pathway of ranolazine

Table 1. The Gradient elution method for the determination of ranolazine 
and CVT-2738

The mobile phase consisted of phase A (phosphate buffer (pH = 2.2; 20 
mM)) and phase B (acetonitrile)
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Linearity
To evaluate the linearity and construction of the 

calibration curve, eight-point calibration curves in the range 
of 4.875–312 ng/ml of ranolazine and 1250–20000 ng/ml of 
CVT-2738 were determined with triplicate measurement 
of each peak area of ranolazine and CVT-2738 in different 
concentrations (22).

Limit of detection and limit of quantitation
LOD and LOQ of the present analytical method were 

estimated according to 3.3:1 and 10:1 signal-to-noise ratio, 
respectively, by the following equations (23):

                                                                                                              

Accuracy and precision 
Accuracy was analyzed by measuring the percentage of 

recovery of three concentration levels of ranolazine and 
CVT-2738 (50%, 100%, and 150%) at five different times. 
Precision was also calculated by measuring the standard 
deviation at intra-day and inter-day five times (24).

Sample preparation
Concerning the serum extraction, 0.5 ml of each rat 

serum was added to 0.5 ml of diethyl ether and vortexed for 
10 min and then was sonicated for 15 min (two times). After 
that, the content was centrifuged at 10000 rpm for 15 min at 
4 °C (three times). The upper separated layer was collected 
and evaporated by nitrogen gas (18). The rat serum residues 
were immediately reconstituted in methanol and then 
injected into the HPLC system.

Pharmacokinetic analysis
The non-compartmental pharmacokinetic model was 

carried out using the Microsoft Excel add-in program 
PKSolver (25). The pharmacokinetic parameters including 
the area under the curve of serum concentration (AUC) 
versus time, the maximum concentration recorded (Cmax), 
the time taken to reach Cmax (Tmax), the half-life of elimination 
(T½), the volume of distribution (Vd), elimination rate (Ke), 
and total drug clearance (CL) were determined (26).

Statistical analysis
The analytical data were expressed as mean ± SD. 

Statistical analyses were conducted using GraphPad Prism 
8.0 (GraphPad Prism Software Inc., San Diego, USA). The 
significance was determined by the independent samples 
t-test. The findings were significant at P<0.05 level. 

Results
HPLC results

The findings of the chromatographic method validation 
of ranolazine and CVT-2738 were mean absolute recovery 
(91.8 and 92.4%; respectively); intra-and inter-day 
repeatability was less than 10% for serum concentrations. 
The standard curves represented excellent linearity for 
ranolazine and CVT-2738 with coefficients of correlation 
(r) more than 0.99 (Figures 2 and 3). The lower limits of 
detection (LOD) of ranolazine and CVT-2738 were 24.76 
ng/ml and 940 ng/ml, respectively. The limits of quantitation 
(LOQ) of ranolazine and CVT-2738 were 51.59 ng/ml and 
1200 ng/ml, respectively.

The pharmacokinetic profile of ranolazine and its 
metabolite CVT-2738 was determined after the 7th 
administration of ranolazine (80 mg/kg b.w., oral) in normal 
saline to DM and non-DM rats. The serum concentration of 
ranolazine versus the time profile appears in Figure 4.

Effects of DM on the absorption pharmacokinetic 
parameters of ranolazine (AUC, Cmax, and Tmax)

The significantly lower AUC0-12 of ranolazine (3164.33 
± 501.87 ng/ml/min) was observed in DM compared with 
non-DM animals (8036.50 ± 2377.93 ng/ml/min) after oral 
administration of 80 mg/kg ranolazine (P<0.001).

The orally administered ranolazine showed significantly 
lower Cmax (899.94 ± 387.85 ng/ml) in DM compared with 
non-DM rats (1911.25 ± 975.90 ng/ml; P<0.05). 

The maximum serum concentration of ranolazine was 
achieved in about 1 ± 0.00 hr after oral administration in 
DM and 1 ± 0.55 hr in non-DM animals, and the difference 
was not statistically significant (P>0.05).

Effect of DM on the volume of distribution of ranolazine
A higher Vd of ranolazine was observed in DM animals 

(133.70 ± 2.81 L/Kg) compared with non-DM animals 
(60.77 ± 2.32 L/Kg; P<0.001). 

Figure 2. Calibration curve of ranolazine

Figure 3. Calibration curve of CVT-2738

Figure 4. The pharmacokinetic profiles of ranolazine after oral 
administration in DM and non-DM groups of rats
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Effects of DM on clearance of ranolazine
The CL of ranolazine in DM rats (21.80 ± 5.00 ng/ml/h) 

was significantly higher than in non-DM rats (9.91 ± 4.83 
ng/ml/hr; P<0.01). There were no significant changes in Ke 
of ranolazine in DM and non-DM rats (P>0.05). 

The pharmacokinetic parameters of ranolazine were 
calculated and are presented in Table 2.

Discussion
Since ranolazine is prescribed in DM patients with 

angina (27), we decided to compare the pharmacokinetic 
profile of this drug and its metabolite CVT-2738 between 
DM and non-DM states. The findings indicated that DM 
significantly decreases AUC and Cmax while it increases CL 
and Vd of this drug. Furthermore, DM did not affect Ke, T1/2, 
and Tmax of ranolazine.

In the present study, the AUC and Cmax of ranolazine 
in DM animals were significantly lower than in non-DM 
animals. We suggest that DM as a P-gp expression inducer 
with no effect on metabolism (28) is able to reduce the AUC 
of ranolazine. Alfarisi et al. (29) reported a decline in plasma 
isoniazid and pyrazinamide concentrations in DM through 
several processes including elevation in intestinal motility, 
expression, and activity of P-gp. Adithan et al. (30) reported 
lower steady-state concentrations of phenytoin in patients 
with DM compared with controls. Nevertheless, the AUC of 
phlorizin was increased after down-regulation of P-gp and 
elevated intestinal tract permeability in DM rats (31).

Based on our previous study (32) showing inhibition of 
CYP3A2 in DM rats, we expected an increase in the serum 
concentration of ranolazine. However, in the current study, 
we observed that the increased Vd was an important factor 
influencing the pharmacokinetics of ranolazine, thereby 
decreasing its serum concentration. Different drugs have 
been shown with lower, equivalent, or higher distribution 
in DM versus non-DM conditions (33). DM can lead 
to an increase in Vd of drugs (34). Recently, Fediuk et al. 
(35) suggested that DM contributes to an enhancement 
in the apparent central volume of distribution (Vc/F) of 
ertugliflozin, thereby diminishing its Cmax without any effect 
on the AUC value of the mentioned drug. Higher Vdss for 
torasemide and omeprazole in DM rats compared with 
control rats have also been reported (36). Patients with 

DM have increased Vd for paracetamol (acetaminophen) 
and theophylline (37, 38). In contrast, decreased V1 and 
Vdss of glimepiride in type 2-DM rats in comparison with 
those of the control and type 1-DM groups were reported 
(39). DM by glycosylation of plasma proteins reduces the 
binding of the drug to the relevant protein and increases 
the concentration of the free form of the drug in the blood. 
Therefore, the free drug can be distributed from plasma to 
the tissues, thereby increasing Vd (40). The Vd of lipophilic 
drugs may be affected by DM, and the increase in the 
lipophilicity of drugs is proportional to their Vd (41). Since 
ranolazine is a drug with high lipophilicity (42), we propose 
that DM has led to an increase in the distribution of this 
drug in the current study.

Considering that the Ke of ranolazine was similar in 
DM and non-DM groups, we assume that the elevated 
Vd of this lipophilic drug resulted in the increase of CL, 
thereby decreasing the AUC of ranolazine in DM animals. 
Apart from the fact that Vd can affect the CL of drugs, in 
the following, we will review studies regarding the effect 
of DM on the CL of drugs. DM predisposes to micro-and 
macrovascular disorders; hence it results in hyperfiltration 
and elevation in glomerular filtration rate. As shown in 
previous studies, a positive correlation exists between the 
doses of drugs and the glomerular filtration rate (28, 43). 
Through elevation of urine output, DM can increase the 
renal elimination of medications (44). Alteration of urine 
pH in DM conditions as a result of ketone production can 
affect urinary elimination of drugs (45). By speeding up the 
hepatic blood flow, DM increases the first-pass effect and 
then increases the hepatic CL, thereby increasing the total 
CL (46). A 3.4-fold increase in oral chlorzoxazone CL and 
then lower oral AUC were expressed in Type II-DM patients 
in comparison to healthy subjects (47). Likewise, after oral 
administration of clarithromycin to non-DM and DM rats, 
faster CL, thereby lower AUC of the mentioned drug in DM 
rats, was distinguished (48). Lee et al. in 2013 (49) reported 
similar urinary excretion of metoprolol in DM and non-DM 
rats. In contrast to our findings, DM rats exhibited lower CL 
but higher Cmax/AUC of paclitaxel compared with non-DM 
rats (50).

In the current study, we expected an increase in the 
serum concentration of ranolazine, but the increased Vd 
was an important factor influencing the pharmacokinetics 
of the drug. This increased the CL of ranolazine and 
thereby decreased its serum concentration. The present 
findings imply that Streptozotocin-Induced DM can affect 
the pharmacokinetic profile of ranolazine. This finding 
highlights the need for dose adjustment of ranolazine in 
DM patients after clinical research.

Conclusion
The findings of our study indicated that increased Vd of 

ranolazine in DM rats resulted in the elevation of ranolazine 
CL and thereby a significant decrease in AUC and Cmax of 
the drug. Further studies are required to explore the dosage 
adjustment of ranolazine in DM patients with chronic angina.
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