Is a Complete Anatomical Fit of the Tomofix Plate Biomechanically Favorable? A Parametric Study Using the Finite Element Method | ||
The Archives of Bone and Joint Surgery | ||
مقاله 9، دوره 10، شماره 8، آبان 2022، صفحه 712-720 اصل مقاله (852.41 K) | ||
نوع مقاله: RESEARCH PAPER | ||
شناسه دیجیتال (DOI): 10.22038/abjs.2022.60928.3003 | ||
نویسندگان | ||
Zahra Hayatbakhsh1؛ Farzam Farahmand* 2؛ Morad Karimpour3 | ||
1Department of Biomedical Engineering, Science and Research branch, Islamic Azad University, Tehran, Iran | ||
2Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran | ||
3School of Mechanical Engineering, University of Tehran, Tehran, Iran | ||
چکیده | ||
Background: The opening wedge high tibial osteotomy (HTO) fixation using the Tomofix system is at the risk of mechanical failure due to unstable fixation, lateral hinge fracture, and hardware breakage. This study aimed to investigate the effect of the level of anatomical fit (LOF) of the plate on the failure mechanisms of fixation. Methods: A finite element model of the HTO with a correction angle of 12 degrees was developed. The LOF of the TomoFix plate was changed parametrically by altering the curvature of the plate in the sagittal plane. The effect of the LOF on the fixation performance was studied in terms of the factor of safety (FOS) against failure mechanisms. The FOSs were found by 1) dividing the actual stiffness of the plate-bone construct by the minimum allowable one for unstable fixation, 2) dividing the compressive strength of the cortical bone by the actual maximum pressure at the lateral hinge for the lateral hinge fracture, and 3) the Soderberg criterion for fatigue fracture of the plate and screws. Results: The increase of the LOF by applying a larger bent to the plate changed the fixation stiffness slightly. However, it reduced the lateral hinge pressure substantially (from 182 MPa to 71 MPa) and increased the maximum equivalent stresses in screws considerably (from 187 MPa to 258 MPa). Based on the FOS-LOF diagram, a gap smaller than 2.3 mm was safe, with the highest biomechanical performance associated with a 0.5 mm gap size. Conclusion: Although a high LOF is necessary for the Tomofix plate fixation to avoid mechanical failure, a gap size of 0.5mm is favored biomechanically over complete anatomical fit. Level of evidence: V | ||
کلیدواژهها | ||
Failure mechanisms؛ Fixation stiffness؛ Hardware breakage؛ Lateral hinge pressure؛ Plate contouring | ||
مراجع | ||
1. Lobenhoffer P. Importance of osteotomy around to the knee for medial gonarthritis. Indications, technique and results. Der Orthopade. 2014; 43(5):425-31. 2. Brouwer RW, Huizinga MR, Duivenvoorden T, van Raaij TM, Verhagen AP, Bierma‐Zeinstra SM, Verhaar JA. Cochrane Database Syst Rev. 2014; 2014(12):CD004019. 3. Klinger HM, Lorenz F, Härer T. Open wedge tibial osteotomy by hemicallotasis for medial compartment osteoarthritis. Arch Orthop Trauma Surg. 2001; 121(5):245-247. 4. Ribeiro CH, Severino NR, Cury RD. Opening wedge high tibial osteotomy. The role of osteotomy in the correction of congenital and acquired disorders of the skeleton. 1st ed. Shanghai: InTech. 2012; 6:115-28. 5. Lee DC, Byun SJ. High tibial osteotomy. Knee Surg Relat Res. 2012; 24(2):61-69. 6. Chahla J, Dean ChS, Mitchell JJ, Moatshe G, Cruz RS, LaPrade RF. Medial opening wedge proximal tibial osteotomy. Arthrosc Tech. 2016; 5(4): 919-928. 7. Hartz C, Wischatta R, Klostermeier E, Paetzold M, Gerlach K, Pries F. Plate-related results of opening wedge high tibial osteotomy with a carbon fiber reinforced poly-ether-ether-ketone (CFPEEK) plate fixation: a retrospective case series of 346 knees. J Orthop Surg Res. 2019; 14(1):466. 8. Brosset T, Pasquier G, Migaud H, Gougeon F. Opening wedge high tibial osteotomy performed without filling the defect but with locking plate fixation (TomoFix) and early weight-bearing: Prospective evaluation of bone union, precision and maintenance of correction in 51 cases. Orthop Traumatol Surg Res. 2011; 97(7):705-711. 9. Cronier P, Pietu G, Dujardin C, Bigorre N, Ducellier F, Gerard R. The concept of locking plates. Orthop Traumatol Surg Res. 2010; 96:17-36. 10.Brinkman JM, Lobenhoffer P, Agneskirchner JD, Staubli AE, Wymenga AB, van Heerwaarden RJ. Osteotomies around the knee: patient selection, stability of fixation and bone healing in high tibial osteotomies. J Bone Joint Surg. 2008; 90(12):1548-57. 11.Yoo OS, Lee YS, Lee MC, Elazab A, Choi DG, Jang YW. Evaluation of the screw position and angle using a post-contoured plate in the open wedge high tibial osteotomy according to the correction degree and surgical technique. Clin Biomech. 2016; 35:111–115. 12.Miller DL, Goswami T. A review of locking compression plate biomechanics and their advantages as internal fixators in fracture healing. Clin Biomech. 2007; 22(10):1049-1062. 13.Ahmad M, Nanda R, Bajwa AS, Candal-Couto J, Green S, Hui AC. Biomechanical testing of the locking compression plate: when does the distance between bone and implant significantly reduce construct stability?. Injury. 2007; 38(3): 358-364. 14.Bottlang M, Doornink J, Fitzpatrick DC, Madey SM. Far cortical locking can reduce stiffness of locked plating constructs while retaining construct strength. J Bone Joint Surg. 2009; 91(8):1985-1994. 15.Pochrzast M, Basiaga M, Marciniak J, Kaczmarek M. Biomechanical analysis of limited-contact plate used for osteosynthesis. Acta Bioeng Biomech. 2014; 16(1). 16.Takeuchi R, Ishikawa H, Kumagai K, Yamaguchi Y, Chiba N, Akamatsu Y, et al. Fractures around the lateral cortical hinge after a medial opening-wedge high tibial osteotomy: a new classification of lateral hinge fracture. Arthrosc. 2012; 28(1):85–94. 17.Martin R, Birmingham TB, Willits K, Litchfield R, Lebel ME, Giffin JR. Adverse event rates and classifications in medial opening wedge high tibial osteotomy. Am J Sports Med. 2014; 42(5):1118–1126. 18.Nha KW, Jung WH, Koh YG, Shin YS. D-hole breakage of 2 angular stable locking plates for medial openingwedge high tibial osteotomy: analysis of results from 12 cases. Medicine (Baltimore). 2019; 98(2):e14138. 19.Koh YG, Lee JA, Lee HY, Chun HJ, Kim HJ, Kang KT. Design optimization of high tibial osteotomy plates using finite element analysis for improved biomechanical effect. J Orthop Surg Res. 2019; 14(1):219. 20.Izaham RM, Kadir MR, Rashid AH, Hossain MG, Kamarul T. Finite element analysis of Puddu and Tomofix plate fixation for open wedge high tibial osteotomy. Injury. 2012; 43(6):898-902. 21.Watanabe K, Kamiya T, Suzuki D, Otsubo H, Teramoto A, Yamashita T. Biomechanical stability of open-wedge high tibial osteotomy: comparison of two locking plates. O J Orthop. 2014; 4:257-262. 22.Luo CA, Hua SY, Lin SC, Chen CM, Tseng CS. Stress and stability comparison between different systems for high tibial osteotomies. BMC Musculoskelet Disord. 2013; 14:110. 23.Cotic M, Vogt S, Hinterwimmer S, Feucht MJ, SlottaHuspenina J, Schuster T, et al. A matched-pair comparison of two different locking plates for valgusproducing medial open-wedge high tibial osteotomy: peek-carbon composite plate versus titanium plate. Knee Surg Sports Traumatol Arthrosc. 2014; 23(7):2914-2918. 24.Weng PW, Chen CH, Luo CA, Sun JS, Tsuang YH, Cheng CK, et al. The effects of tibia profile, distraction angle, and knee load on wedge instability and hinge fracture: A finite element study. Med Eng Phys. 2017; 42:48-54. 25.Jang YW, Lim DH, Seo H, Lee MC, Lee OS, Lee YS. Role of an anatomically contoured plate and metal block for balanced stability between the implant and lateral hinge in open-wedge high tibial osteotomy. Orthop Trauma Surg. 2018; 138(7):911-920. 26.Kaze AD, Maas S, Waldmann D, Zilian A, Dueck K, Pape D. Biomechanical properties of five different currently used implants for open-wedge high tibial osteotomy. J Exp Orthop. 2015; 2(1):14. 27.Chen YN, Chang CW, Li CT, Chen CH, Chung CR, Chang CH, et al. Biomechanical investigation of the type and configuration of screws used in high tibial osteotomy with titanium locking plate and screw fixation. Orthop Surg Res. 2019; 14(1):35. 28.Diffo Kaze A, Maas S, Belsey J, Hoffmann A, Pape D. Static and fatigue strength of a novel anatomically contoured implant compared to five current openwedge high tibial osteotomy plates. J Exp Orthop. 2017; 4(1):1-3. 29.MacLeod AR, Serrancoli G, Fregly BJ, Toms AD, Gill HS. The effect of plate design, bridging span, and fracture healing on the performance of high tibial osteotomy plates. Bone Joint Res. 2018; 7(12):639–649. 30.Kang KT, Koh YG, Lee JA, Lee JJ, Kwon SK. Biomechanical effect of a lateral hinge fracture for a medial opening wedge high tibial osteotomy: finite element study. J Orthop Surg Res. 2020; 15(1):63. 31.Yoo OS, Lee YS, Lee MC, Park JH, Kim JW, Sun DH. Morphologic analysis of the proximal tibia after open wedge high tibial osteotomy for proper plate fitting. BMC Musculoskelet Disord. 2016; 17:423. 32.Hayatbakhsh Z, Farahmand F. Effects of plate contouring quality on the biomechanical performance of high tibial osteotomy fixation - A parametric finite element study. Proc Inst Mech Eng H. in press. 2022; 236(3):356-66. 33.Mortazavi J, Farahmand F, Behzadipour S, Yeganeh A, Aghighi M. A patient specific finite element simulation of intramedullary nailing to predict the displacement of the distal locking hole. Med Eng Phys. 2018; 55:34-42. 34.Sabzevari S, Ebrahimpour A, Roudi MK, Kachooei AR. High tibial osteotomy: a systematic review and current concept. Arch Bone Jt Surg. 2016; 4(3):204. 35.Perren SM, Cordey J. The concept of interfragmentary strain. Current concepts of internal fixation of fractures. 1980:63-77. 36.Reilly DT, Burstein AH. The elastic and ultimate properties of compact bone tissue. J Biomech. 1975; 8(6):393–405. 37.AZO Materials, Material properties of Titanium Alloys - Ti6Al4V Grade 5 [Internet]: From U.S. Titanium Industry Inc; 2002 [cited 2002 Jul 30]. Available from: https://www.azom.com/article.aspx?ArticleID=1547 38.Schmutz B, Wullschleger ME, Noser H, Barry M, Meek J, Schütz MA. Fit optimisation of a distal medial tibia plate. Comput Methods Biomech Biomed Eng. 2011; 14(4):5. 39.Abbaszadeh F, Rahmati S, Kheirollahi H, Farahmand F. Design for manufacturing of custom-made femoral stem using CT data and rapid prototyping technology. Int J Rapid Manuf. 2011; 2(1-2):76-91. 40.Gomari B, Farahmand F, Farkhondeh H. A rapid prototyping-based methodology for patient-specific contouring of osteotomy plates. Rapid Prototyp J. 2019; 25(5):888–894. 41.Giannatsis J, Dedoussis V. Additive fabrication technologies applied to medicine and health care: a review. Int J Adv Manuf Technol. 2009; 40:116-127. 42.MacLeod A, Simpson AHRW, Pankaj P. Experimental and numerical investigation into the influence of loading conditions in biomechanical testing of locking plate fracture fixation devices. Bone Joint Res. 2018; 7(1):111-120. 43.Blecha LD, Zambelli PY, Ramaniraka NA, Bourban PE, Månson JA, Pioletti DP. How plate positioning impacts the biomechanics of the open wedge tibial osteotomy; a finite element analysis. Comput Methods Biomech Biomed Engin. 2005; 8(5):307-13. 44.Bahraminasab M, Sahari BB, Edwards KL, Farahmand F, Honga TS, Naghibi H. Material tailoring of the femoral component in a total knee replacement to reduce the problem of aseptic loosening. Materials & Design. 2013; 52:441-451. 45.Bahraminasab M, Sahari BB, Edwards KL, Farahmand F, Jahan A, Hong TS, et al. On the influence of shape and material used for the femoral component pegs in knee prostheses for reducing the problem of aseptic loosening. Materials & Design. 2014; 55:416-428 | ||
آمار تعداد مشاهده مقاله: 603 تعداد دریافت فایل اصل مقاله: 420 |