Therapeutic potential of Mucuna pruriens (Linn.) on high-fat diet-induced testicular and sperm damage in rats | ||
Avicenna Journal of Phytomedicine | ||
دوره 12، شماره 5، آذر و دی 2022، صفحه 489-502 اصل مقاله (1.31 M) | ||
نوع مقاله: Original Research Article | ||
شناسه دیجیتال (DOI): 10.22038/ajp.2022.20261 | ||
نویسندگان | ||
Anuradha Murugesan؛ Karthik Ganesh Mohanraj؛ Khayinmi Wungpam Shimray؛ Mohammad Zafar Iqbal Khan؛ Prakash Seppan* | ||
Department of Anatomy, Dr. Arcot Lakshmanaswamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India | ||
چکیده | ||
Objective: Mucuna pruriens Linn., a leguminous plant, is identified as a herbal medicine for improving fertility-related disorders in the alternative and complementary systems of medicine. The study was focused on evaluating the therapeutic potential of M. pruriens on testis and sperm parameters in a high-fat-induced hypercholesterolemia model. Materials and Methods: Male rats were divided as normal-control rats (NCR); normal-control rats + M.pruriens (200 mg/kg b.w. of ethanolic extract of M. pruriens seed) treated (NCRD); hypercholesterolemic rats (HCR) and hypercholesterolemic rats + M. pruriens (HCRD). Groups were further divided into three post-exposure periods (subgroups) of 9, 18, and 36 days, and the progressive changes in testis histology and sperm were analyzed. Results: The study showed a significant impairment in testicular histoarchitecture, depletion of antioxidant enzyme levels, increased oxidative stress and lipid peroxidation in the HCR group. The study indicated severe structural and functional damage in sperm parameters and diminished chromatin integrity in the HCR group. In the HCR rats, the follicular stimulating hormone (FSH) and luteinizing hormone (LH) and testosterone were significantly reduced. There was a significant improvement in sperm parameters and testis histology in the HCRD group. Conclusion: The study reveals the potential efficacy of M. pruriens to improve spermatogenesis, sperm parameters and hormone levels in hypercholesterolemic rats. | ||
کلیدواژهها | ||
Hypercholesterolemia؛ Mucuna pruriens؛ Testis؛ Spermatogenesis؛ Oxidative stress | ||
مراجع | ||
Abou Ghalia AH, Fouad IM. 2000. Glutathione and its metabolizing enzymes in patients with different benign and malignant diseases. Clin Biochem, 33: 657-662. Adebowale YA, Adeyemi A, Oshodi AA. 2005. Variability in the physicochemical, nutritional and antinutritional attributes of six Mucuna species. Food Chem, 89: 37- 48. Beutler E, Duron O, Kelly BM. 1963. Improved method for the determination of blood glutathione. J Lab Clin Med, 61: 882-888. Burnett AL. 2006. The role of nitric oxide in erectile dysfunction: implications for medical therapy. J Clin Hypertens, 8: 53- 62. CPCSEA guidelines for laboratory animal facility. 2003. Ind J Pharmacol, 35: 257- 274. Das SK, Vasudevan DM. 2006. Effect of lecithin in the treatment of ethanol mediated free radical induced hepatotoxicity. Indian J Clin Biochem, 21: 62-69. Dhale D, Sanskruti P. 2010. Pharmacognostic Evaluation of Mucuna Pruriens (L) Dc. (Fabaceae). Int J Pharma World Res, 1: 1- 13. Ellman GL. 1959. Tissue sulfhydryl groups. Arch Biochem Biophys, 72: 70-77. Fong KL, McCay PB, Poyer JL, Keele BB, Misra H. 1973. Evidence that peroxidation of lysosomal membranes is initiated by hydroxyl free radicals produced during flavin enzyme activity. J Biol Chem, 25: 7792-7797. Garjani A, Azarmiy Y, Zakheri A, Allaf Akbari N, Andalib S, Maleki-Dizaji N. 2011. Vascular dysfunction in short-term hypercholesterolemia despite the absence of atherosclerotic lesions. J Cardiovasc Thorac Res, 3: 73-77. Gokkaya SC, Ozden C, Ozdal OL, Koyuncu HH, Guzel O, Memis A. 2008. Effect of correcting serum cholesterol levels on erectile function in patients with vasculogenic erectile dysfunction. Scand J Urol Nephrol, 42: 437-440. Habig WH, Pabst MJ, Jakoby WB, William B. 1974. Glutathione S-Transferases the first enzymatic step in mercapturic acid formation. J Biol Chem, 249: 7130-7139. Harborne JB, 1973. Phytochemical Methods. A Guide to Modern Techniques of Plant Analysis., pp. 105-185, Chapman and Hall International, London. Hariri N, Thibault L. 2010. High-fat dietinduced obesity in animal models. Nutr Res Rev, 23: 270-299. Hsieh HJ, Liu CA, Huang B, Tseng AH, Wang DL. 2014. Shear-induced endothelial mechanotransduction: the interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications. J Biomed M. pruriens on high-fat diet induced reproductive disorder AJP, Vol. 12, No. 5, Sep-Oct 2022 501 Sci, 13: 3. Hu X, Wang T, Luo J, Liang S, Li W, Wu X, Jin F, Wang L. 2014. Age-dependent effect of high cholesterol diets on anxietylike behavior in elevated plus maze test in rats. Behav Brain Funct, 10: 30. Hurt RT, Kulisek C, Buchanan LA, McClave SA. 2010. The obesity epidemic: challenges, health initiatives, and implications for gastroenterologists. Gastroenterol Hepatol (N Y), 6: 780-792. Kanazawa K, Sakakibara H. 2000. High content of dopamine, a strong antioxidant, in cavendish banana. J Agric Food Chem, 48: 844-888. Kannan S, Srinivasan D, Raghupathy PB, Bhaskaran RS. 2019. Association between duration of obesity and severity of ovarian dysfunction in rat-cafeteria diet approach. J Nutr Biochem, 71: 132-143. Kora T, Sugimoto M, Ito K. 1996. Cellular distribution of glutathione -transferase-P gene expression during rat hepatocarcinogenesis by diethylnitrosamine. Int Hepatol Commun, 5: 266-273. Lampariello LR, Cortelazzo A, Guerranti R, Sticozzi C, Valacchi G. 2012. The magic velvet bean of Mucuna pruriens. J Tradit Complement Med, 2: 331-339. Saez Lancellotti TE, Boarelli PV, Romero AA, Funes AK, Cid-Barria M, Cabrillana ME, Monclus MA, Simón L, Vicenti AE, Fornés MW. 2013. Semen quality and sperm function loss by hypercholesterolemic diet was recovered by addition of olive oil to diet in rabbit. PLoS One, 8: e52386. Marklund S, Marklund G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem, 47: 469-474. Misra L, Wagner H. 2004. Alkaloidal constituents of Mucuna pruriens seeds. Phytochem, 65: 2565-2567. Murugesan P, Senthilkumar J, Balasubramanian K, Aruldhas MM, Arunakaran J. 2005. Impact of polychlorinated biphenyl Aroclor 1254 on testicular antioxidant system in adult rats. Hum Exp Toxicol, 24: 61-66. Ohara Y, Peterson TE, Harrison DG. 1993. Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest, 91: 2546-2551. Ohkawa H, Ohishi N, Yagi K. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem, 95: 351-358. Olfert ED, Cross BM, McWilliam AA. 1993. Guide to the care and use of experimental animals. Volume 1. 2nd ed. Canadian Council for Animal Care. Pacher P, Beckman JS, Liaudet L. 2007. Nitric oxide and peroxynitrite in health and disease. Physiol Rev, 87: 315-424. Pandey G. 1998. Chamatkari Jadi-Butiyan. Bhasha Bhavan, Mathura, India. Pandey U. 1999. Chamatkari Paudhe. Bhagwati Pocket Books, Agra, India. Pathania R. Chawla P, Khan H, Kaushik R, Khan MA. 2020. An assessment of potential nutritive and medicinal properties of Mucuna pruriens: a natural food legume. Biotech, 10: 261. Podczasy JJ, Wei R. 1988. Reduction of iodonitrotetrazolium violet by superoxide radicals. Biochem Biophys Res Commun, 150: 1294-12301. Pollin TI, Quartuccio M. 2013. What We Know About Diet, Genes, and Dyslipidemia: Is There Potential for Translation? Curr Nutr Rep, 2: 236-242. Prakash S, Prithiviraj E, Suresh S. 2007. Developmental changes of seminiferous tubule in prenatal, postnatal and adult testis of bonnet monkey (Macaca radiata). Anat Histol Embryol, 37: 19-23. Pulikkalpura H, Kurup R, Mathew PJ, Baby S. 2015. Levodopa in Mucuna pruriens and its degradation. Sci Rep, 5: 11078. Puntarulo S, Cederbaum AI. 1988. Production of reactive oxygen species by microsomes enriched in specific human cytochrome P450 enzymes. Free Radic Biol Med, 24: 1324-1330. Ramaswamy S, Weinbauer GF. 2015. Endocrine control of spermatogenesis: Role of FSH and LH/ testosterone. Spermatogenesis, 26: e996025. Ratnawati H, Widowati W. 2011. Anticholesterol activity of velvet bean (Mucuna pruriens L.) towards hypercholesterolemic rats. Sains Malaysiana, 4: 317-321. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG. 1973. Selenium: biochemical role as acomponent of glutathione peroxidase. Science, 179: Murugesan et al. AJP, Vol. 12, No. 5, Sep-Oct 2022 502 588-590. Saez F, Drevet JR. 2019. Dietary cholesterol and lipid overload: Impact on male fertility. Oxid Med Cell Longev, 6: 4521786. Sathiyanarayanan L, Arulmozhi S. 2007. Mucuna pruriens Linn. - A Comprehensive Review. Pharmacogn Rev, 1: 157-162. Sèdes L, Thirouard L, Maqdasy S, Garcia M, Caira F, Lobaccaro JM, Beaudoin C, Volle D. 2018. Cholesterol: A gatekeeper of male fertility? Front Endocrinol (Lausanne), 9: 369. Seppan P, Muhammed I, Mohanraj KG, Premavathy D, Muthu SJ, Wungpam K, Sathyanathan SB. 2018. Therapeutic potential of Mucuna pruriens (Linn.) on ageing induced damage in the dorsal nerve of the penis and its implication on erectile function: An experimental study using albino rats. Aging Male, 23: 313-326. Shukla KK, Mahdi AA, Ahmad MK, Jaiswar SP, Shankwar SN, Tiwari SC. 2010. Mucuna pruriens reduces stress and improves the quality of semen in infertile men. Evid Based Complement Alternat Med, 7: 137-144. Shukla KK, Mahdi AA, Ahmad MK, Shankhwar SN, Rajender S, Jaiswar SP. 2009. Mucuna pruriens improves male fertility by its action on the hypothalamuspituitary-gonadal axis. Fertil Steril, 92: 1934-1940. Siddhuraju P, Becker K. 2005. Nutritional and antinutritional composition, in vitro amino acid availability, starch digestibility and predicted glycemic index of differentially processed mucuna beans (Mucuna pruriens var. utilis): an under-utilised legume. Food Chem, 91: 275-286. Sinha AK. 1972. Colorimetric assay of catalase. Anal Biochem, 47: 389-394. Skeldon SC, Detsky AS, Goldenberg SL, Law MR. 2015. Erectile dysfunction and undiagnosed diabetes, hypertension, and hypercholesterolemia. Ann Fam Med, 13: 331-335. Stanworth R, Jones T. 2009. Testosterone in obesity, metabolic syndrome and type 2 diabetes. Front Horm Res, 37: 74-90. Suleiman JB, Mohamed M, Bakar ABA. 2019. A systematic review on different models of inducing obesity in animals: Advantages and limitations, J Adv Vet Anim Res, 7: 103-114. Suresh S, Prakash S. 2011. Effect of Mucuna pruriens (Linn.) on oxidative stressinduced structural alteration of Corpus cavernosum in streptozotocin-induced diabetic rat. J Sex Med, 8: 1943-1956. Suresh S, Prakash S. 2012. Effect of Mucuna pruriens (Linn.) on sexual behavior and sperm parameters in streptozotocininduced diabetic male rat. J Sex Med, 9: 3066-3078. Suresh S, Prithiviraj E, Prakash S. 2009. Doseand time-dependent effects of ethanolic extract of Mucuna pruriens Linn. seed on sexual behaviour of normal male rats. J Ethnopharmacol, 122: 497-501. Suresh S, Prithiviraj E, Prakash S. 2010. Effect of Mucuna pruriens on oxidative stress mediated damage in aged rat sperm. Int J Androl, 33: 22-32. Suresh S, Prithiviraj E, Venkata Lakshmi N, Karthik Ganesh M, Ganesh L, Prakash S. 2013. Effect of Mucuna pruriens (Linn.) on mitochondrial dysfunction and DNA damage in epididymal sperm of streptozotocin induced diabetic rat. J Ethnopharmacol, 145: 32-41. Tripathi YB, Upadhyay AK. 2002. Effect of the alcohol extract of the seeds of Mucuna pruriens on free radicals and oxidative stress in albino rats. Phyther Res, 16: 534- 538. Whitfield M, Pollet-Villard X, Levy R, Drevet JR, Saez F. 2015. Posttesticular sperm maturation, infertility, and hypercholesterolemia. Asian J Androl, 2: 742-748. | ||
آمار تعداد مشاهده مقاله: 10,140 تعداد دریافت فایل اصل مقاله: 1,116 |