Targeted delivery of galbanic acid to colon cancer cells by PLGA nanoparticles incorporated into human mesenchymal stem cells | ||
Avicenna Journal of Phytomedicine | ||
دوره 12، شماره 3، مرداد و شهریور 2022، صفحه 295-308 اصل مقاله (1.04 M) | ||
نوع مقاله: Original Research Article | ||
شناسه دیجیتال (DOI): 10.22038/ajp.2022.20022 | ||
نویسندگان | ||
Mahboubeh Ebrahimian1؛ Sanaz Shahgordi2؛ Rezvan Yazdian-Robati3؛ Leila Etemad4؛ Maryam Hashemi* 5؛ Zahra Salmasi* 6 | ||
1Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran | ||
2Department of Immunology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran | ||
3Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran | ||
4Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran | ||
5Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran | ||
6Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran | ||
چکیده | ||
Objective: The aim of this study was to investigate the efficacy of mesenchyme stem cells (MSCs) derived from human adipose tissue (hMSCs) as carriers for delivery of galbanic acid (GBA), a potential anticancer agent, loaded into poly (lactic-co-glycolic acid) (PLGA) nanoparticles (nano-engineered hMSCs) against tumor cells. Materials and Methods: GBA-loaded PLGA nanoparticles (PLGA/GBA) were prepared by single emulsion method and their physicochemical properties were evaluated. Then, PLGA/GBA nanoparticles were incorporated into hMSCs (hMSC/PLGA-GBA) and their migration ability and cytotoxicity against colon cancer cells were investigated. Results: The loading efficiency of PLGA/GBA nanoparticles with average size of 214±30.5 nm into hMSCs, was about 85 and 92% at GBA concentration of 20 and 40 μM, respectively. Nano-engineered hMSCs showed significant higher migration to cancer cells (C26) compared to normal cells (NIH/3T3). Furthermore, nano-engineered hMSCs could effectively induce cell death in C26 cells in comparison with non-engineered hMSCs. Conclusion: hMSCs could be implemented for efficient loading of PLGA/GBA nanoparticles to produce a targeted cellular carrier against cancer cells. Thus, according to minimal toxicity on normal cells, it deserves to be considered as a valuable platform for drug delivery in cancer therapy. | ||
کلیدواژهها | ||
Nano-engineered mesenchymal stem cells؛ Targeted delivery؛ Cellular carrier؛ Galbanic acid؛ PLGA؛ Cancer | ||
مراجع | ||
Afsharzadeh M, Abnous K, Yazdian–Robati R, Ataranzadeh A, Ramezani M, Hashemi M. 2019. Formulation and evaluation of anticancer and antiangiogenesis efficiency of PLA–PEG nanoparticles loaded with galbanic acid in C26 colon carcinoma, in vitro and in vivo. J Cell Physiol, 234: 6099-6107. Ebrahimian et al. AJP, Vol. 12, No. 3, May-Jun 2022 306 Afsharzadeh M, Hashemi M, Babaei M, Abnous K, Ramezani M. 2020. PEG‐PLA nanoparticles decorated with small‐ molecule PSMA ligand for targeted delivery of galbanic acid and docetaxel to prostate cancer cells. J Cell Physiol, 235: 4618-4630. Azimifar MA, Salmasi Z, Doosti A, Babaei N, Hashemi M. 2021. Evaluation of the efficiency of modified PAMAM dendrimer with low molecular weight protamine peptide to deliver IL‐12 plasmid into stem cells as cancer therapy vehicles. Biotechnol Prog, 37: e3175. Charbgoo F, Taghdisi SM, Yazdian‐Robati R, Abnous K, Ramezani M, Alibolandi M. 2020. Aptamer‐incorporated nanoparticle systems for drug delivery. In: Nanobiotechnology in Diagnosis, Drug Delivery, and Treatment, pp. 95-112, Wiley-Blackwell. Chulpanova DS, Kitaeva KV, Tazetdinova LG, James V, Rizvanov AA, Solovyeva VV. 2018. Application of mesenchymal stem cells for therapeutic agent delivery in anti-tumor treatment. Front Pharmacol, 9: 259. Ding D, Zhu Q. 2018. Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. Mater Sci Eng C, 92: 1041-1060. Du X, Xue J, Jiang M, Lin S, Huang Y, Deng K, Shu L, Xu H, Li Z, Yao J. 2021. A multiepitope peptide, rOmp22, encapsulated in chitosan-PLGA nanoparticles as a candidate vaccine against Acinetobacter baumannii infection. Int J Nanomedicine, 16: 1819-1836. Ebrahimian M, Hashemi M, Maleki M, Abnous K, Hashemitabar G, Ramezani M, Haghparast A. 2016. Induction of a balanced Th1/Th2 immune responses by co-delivery of PLGA/ovalbumin nanospheres and CpG ODNs/PEI-SWCNT nanoparticles as TLR9 agonist in BALB/c mice. Int J Pharm, 515: 708-720. Ebrahimian M, Hashemi M, Maleki M, Hashemitabar G, Abnous K, Ramezani M, Haghparast A. 2017. Co-delivery of dual toll-like receptor agonists and antigen in poly (lactic-co-glycolic) acid/polyethylenimine cationic hybrid nanoparticles promote efficient in vivo immune responses. Front Immunol, 8: 1077. Eskandani M, Abdolalizadeh J, Hamishehkar H, Nazemiyeh H, Barar J. 2015. Galbanic acid inhibits HIF-1α expression via EGFR/HIF-1α pathway in cancer cells. Fitoterapia, 101: 1-11. Gao Z, Zhang L, Hu J, Sun Y. 2013. Mesenchymal stem cells: a potential targeted-delivery vehicle for anti-cancer drug loaded nanoparticles. Nanomed: Nanotechnol Biol Med, 9: 174-184. Gharedaghi Kloucheh S, Khoubanfar H, Moghaddam Matin M, Behnam Rassouli F, Investigating effects of galbanic acid on the viability of LoVo colon carcinoma cells, 2021, Proceedings of the 21st International and 9th National Congress in Biology, Semnan, Iran. Hafezi Ghahestani Z, Alebooye Langroodi F, Mokhtarzadeh A, Ramezani M, Hashemi M. 2017. Evaluation of anti-cancer activity of PLGA nanoparticles containing crocetin. Artif Cells Nanomed Biotechnol, 45: 955- 960. Hashemi M, Abnous K, Balarastaghi S, Hedayati N, Salmasi Z, Yazdian-Robati R. 2022. Mitoxantrone-loaded PLGA nanoparticles for increased sensitivity of glioblastoma cancer cell to TRAIL-induced apoptosis. J Pharm Innov, 17: 207-214. Hashemi M, Haghgoo Z, Yazdian-Robati R, Shahgordi S, Salmasi Z, Abnous K. 2021. Improved anticancer efficiency of mitoxantrone by curcumin loaded PLGA nanoparticles targeted with AS1411 aptamer. Nanomed J, 8: 21-29. Hashemi M, Shamshiri A, Saeedi M, Tayebi L, Yazdian-Robati R. 2020. Aptamerconjugated PLGA nanoparticles for delivery and imaging of cancer therapeutic drugs. Arch Biochem Biophy, 691: 108485. Heidari R, Gholamian Dehkordi N, Mohseni R, Safaei M. 2020. Engineering mesenchymal stem cells: a novel therapeutic approach in breast cancer. J Drug Target, 28: 732-741. Hour FQ, Moghadam AJ, Shakeri-Zadeh A, Bakhtiyari M, Shabani R, Mehdizadeh M. 2020. Magnetic targeted delivery of the SPIONs-labeled mesenchymal stem cells derived from human Wharton's jelly in Alzheimer's rat models. J Control Release, 321: 430-441. Nano-engineered MSCs for eliminating cancer cells AJP, Vol. 12, No. 3, May-Jun 2022 307 Huang M, Lu J-J, Ding J. 2021. Natural products in cancer therapy: past, present and future. Nat Prod Bioprospect, 11: 5-13. Huang P, Russell AL, Lefavor R, Durand NC, James E, Harvey L, Zhang C, Countryman S, Stodieck L, Zubair AC. 2020. Feasibility, potency, and safety of growing human mesenchymal stem cells in space for clinical application. NPJ Microgravity, 6: 16. Kim K-H, Lee H-J, Jeong S-J, Lee H-J, Lee EO, Kim H-S, Zhang Y, Ryu S-Y, Lee M-H, Lü J. 2011. Galbanic acid isolated from Ferula assafoetida exerts in vivo anti-tumor activity in association with antiangiogenesis and anti-proliferation. Pharm Res, 28: 597-609. Krueger TE, Thorek DL, Denmeade SR, Isaacs JT, Brennen WN. 2018. Concise review: Mesenchymal stem cell‐based drug delivery: The good, the bad, the ugly, and the promise. Stem Cells Transl Med, 7: 651-663. Labusca L, Herea DD, Mashayekhi K. 2018. Stem cells as delivery vehicles for regenerative medicine-challenges and perspectives. World J Stem Cells, 10: 43- 56. Li L, Guan Y, Liu H, Hao N, Liu T, Meng X, Fu C, Li Y, Qu Q, Zhang Y. 2011. Silica nanorattle–doxorubicin-anchored mesenchymal stem cells for tumor-tropic therapy. ACS nano, 5: 7462-7470. Lin W, Li C, Xu N, Watanabe M, Xue R, Xu A, Araki M, Sun R, Liu C, Nasu Y. 2021. Dual-functional PLGA nanoparticles coloaded with indocyanine green and resiquimod for prostate cancer treatment. Int J Nanomedicine, 16: 2775. L Ramos T, Sánchez-Abarca LI, Muntión S, Preciado S, Puig N, López-Ruano G, Hernández-Hernández Á, Redondo A, Ortega R, Rodríguez C, Sánchez-Guijo F, del Cañizo C. 2016. MSC surface markers (CD44, CD73, and CD90) can identify human MSC-derived extracellular vesicles by conventional flow cytometry. Cell Commun Signal, 14: 2. Mosafer J, Abnous K, Tafaghodi M, Mokhtarzadeh A, Ramezani M. 2017. In vitro and in vivo evaluation of antinucleolin-targeted magnetic PLGA nanoparticles loaded with doxorubicin as a theranostic agent for enhanced targeted cancer imaging and therapy. Eur J Pharm Biopharm, 113: 60-74. Nik ME, Malaekeh-Nikouei B, Amin M, Hatamipour M, Teymouri M, Sadeghnia HR, Iranshahi M, Jaafari MR. 2019. Liposomal formulation of Galbanic acid improved therapeutic efficacy of pegylated liposomal doxorubicin in mouse colon carcinoma. Sci Rep, 9: 1-15. Oh BS, Shin EA, Jung JH, Jung DB, Kim B, Shim BS, Yazdi MC, Iranshahi M, Kim SH. 2015. Apoptotic effect of galbanic acid via activation of caspases and inhibition of Mcl‐1 in H460 non‐small lung carcinoma cells. Phytother Res, 29: 844-849. Paris JL, de la Torre P, Manzano M, Cabañas MV, Flores AI, Vallet-Regí M. 2016. Decidua-derived mesenchymal stem cells as carriers of mesoporous silica nanoparticles. in vitro and in vivo evaluation on mammary tumors. Acta Biomater, 33: 275-282. Paris JL, de la Torre P, Victoria Cabañas M, Manzano M, Grau M, Flores AI, ValletRegí M. 2017. Vectorization of ultrasoundresponsive nanoparticles in placental mesenchymal stem cells for cancer therapy. Nanoscale, 9: 5528-5537. Sajjadi M, Karimi E, Oskoueian E, Iranshahi M, Neamati A. 2019. Galbanic acid: induced antiproliferation in estrogen receptor‐negative breast cancer cells and enhanced cellular redox state in the human dermal fibroblasts. J Biochem Mol Toxicol, 33: e22402. Salmasi Z, Hashemi M, Mahdipour E, Nourani H, Abnous K, Ramezani M. 2020. Mesenchymal stem cells engineered by modified polyethylenimine polymer for targeted cancer gene therapy, in vitro and in vivo. Biotechnol Prog, 36: e3025. Salmasi Z, Mokhtarzadeh A, Hashemi M, Ebrahimian M, Farzad SA, Parhiz H, Ramezani M. 2018. Effective and safe in vivo gene delivery based on polyglutamic acid complexes with heterocyclic amine modified-polyethylenimine. Colloids Surf B Biointerfaces, 172: 790-796. Semete B, Booysen L, Lemmer Y, Kalombo L, Katata L, Verschoor J, Swai HS. 2010. In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems. Nanomed: Nanotechnol Biol Med, 6: 662-671. Ebrahimian et al. AJP, Vol. 12, No. 3, May-Jun 2022 308 Shahcheraghi SH, Lotfi M, Soukhtanloo M, Ghayour Mobarhan M, Jaliani HZ, Sadeghnia HR, Ghorbani A. 2021. Effects of galbanic acid on proliferation, migration, and apoptosis of glioblastoma cells through the PI3K/Akt/MTOR signaling pathway. Curr Mol Pharmacol, 14: 79-87. Tayarani-Najaran Z, Kamali H, Hadizadeh F, Ahmadi F, Shahidi S. 2021. Osteoblast differentiation of human dental pulp stem cells with dexamethasone in-situ forming implant. J Mashhad Dent Sch, 45: 70-82. Tripodo G, Chlapanidas T, Perteghella S, Vigani B, Mandracchia D, Trapani A, Galuzzi M, Tosca MC, Antonioli B, Gaetani P. 2015. Mesenchymal stromal cells loading curcumin-invite-micelles: A drug delivery system for neurodegenerative diseases. Colloids Surf B Biointerfaces, 125: 300-308. Vallet-Regí M, Paris J, Torre P, Cabañas M, Manzano M, Flores A. 2018. Mesenchymal stem cells from human placenta as nanoparticle delivery vectors. Insights Stem Cells, 4: 1-2. Wang X, Chen H, Zeng X, Guo W, Jin Y, Wang S, Tian R, Han Y, Guo L, Han J, Wu Y, Mei L. 2019. Efficient lung cancertargeted drug delivery via a nanoparticle/MSC system. Acta Pharm Sin, 9: 167-176. Wang X, Gao J, Ouyang X, Wang J, Sun X, Lv Y. 2018. Mesenchymal stem cells loaded with paclitaxel-poly (lactic-coglycolic acid) nanoparticles for gliomatargeting therapy. Int J Nanomedicine, 13: 5231. Yao S, Li X, Liu J, Sun Y, Wang Z, Jiang Y. 2017. Maximized nanodrug-loaded mesenchymal stem cells by a dual drugloaded mode for the systemic treatment of metastatic lung cancer. Drug Deliv, 24: 1372-1383. Yin P, Gui L, Wang C, Yan J, Liu M, Ji L, Wang Y, Ma B, Gao W-Q. 2020. Targeted delivery of CXCL9 and OX40L by mesenchymal stem cells elicits potent antitumor immunity. Mol Ther, 28: 2553- 2563. Zhang M, Kim Y-K, Cui P, Zhang J, Qiao J, He Y, Lyu J, Luo C, Xing L, Jiang H. 2016. Folate-conjugated polyspermine for lung cancer–targeted gene therapy. Acta Pharm Sin B, 6: 336-343. Zhang X, Yao S, Liu C, Jiang Y. 2015. Tumor tropic delivery of doxorubicin-polymer conjugates using mesenchymal stem cells for glioma therapy. Biomaterials, 39: 269- 281. Zhang Y, Kim KH, Zhang W, Guo Y, Kim SH, Lü J. 2012. Galbanic acid decreases androgen receptor abundance and signaling and induces G1 arrest in prostate cancer cells. Int J Cancer, 130: 200-212. Zhao Y, Tang S, Guo J, Alahdal M, Cao S, Yang Z, Zhang F, Shen Y, Sun M, Mo R. 2017. Targeted delivery of doxorubicin by nano-loaded mesenchymal stem cells for lung melanoma metastases therapy. Sci Rep, 7: 1-12. | ||
آمار تعداد مشاهده مقاله: 8,962 تعداد دریافت فایل اصل مقاله: 1,814 |