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Objective(s): Acute respiratory distress syndrome resulting from acute lung injury has become a 
momentous clinical concern because of high morbidity and mortality in discharged patients with 
pulmonary and nonpulmonary diseases. This study aimed to explore the effect of protein kinase C 
(PKC) θ gene knockout on acute lung injury.
Materials and Methods: Wt and PKC θ gene knockout mice were intravenously injected with oleic acid 
to induce acute lung injury. Pulmonary capillary permeability was assessed via measuring lung wet/
dry weight ratio and level of protein in bronchoalveolar lavage fluid (BALF). Histological changes were 
used to examine acute lung injury. Malondialdehyde (MDA) level, superoxide dismutase (SOD) activity 
in serum, together with inflammatory cytokines including interleukin (IL)-6 and tumor necrosis 
factor-alpha (TNF-α), were determined. Furthermore, the expressions of heme oxygenase (HO)-1, 
nuclear factor kappa B (NF κB), and inhibitor of NF-κB alpha (IκB α) were detected in the lungs.
Results: PKC θ gene knockout decreased lung wet/dry weight ratio, reduced levels of MDA, IL-6, and 
TNF-α in serum together with level of protein in BALF. Furthermore, PKC θ gene knockout increased 
the activities of SOD.  Knockout of PKC θ was also observed to increase expression of HO-1 and reduce 
levels of p-NF κB and p-IKB α in the lungs.
Conclusion: These results suggest that PKC θ gene knockout attenuates oleic acid-induced acute lung 
injury via improving oxidative stress and inflammation.
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Introduction
The lung is considered a primary target of various 

insults such as noxious gases, contaminants, and 
infection, subsequently resulting in lung injury. Diffuse 
inflammation is implicated in acute lung injury which 
exhibits various features such as pulmonary edema 
and bilateral pulmonary infiltrates (1, 2). Acute lung 
injury (ALI) causes proteinaceous alveolar exudates 
and further progresses to its severe form called acute 
respiratory distress syndrome (ARDS) (2). ARDS has 
become a momentous clinical concern because of high 
morbidity and mortality in discharged patients with 
pulmonary and nonpulmonary diseases (3). Clinical and 
experimental results indicate that oxidative stress and 
inflammation are involved in the pathogenesis of ALI 
(4-6). Excessive generation of reactive oxygen species 
(ROS) in the state of oxidative stress impairs biological 
membranes through lipid peroxidation, which increases 
vascular permeability and further results in leakage 
of serum proteins into the alveoli (7). Various studies 
have demonstrated that ROS stimulates activation 
of innate immune cells and the subsequent release 
of inflammatory cytokines such as tumor necrosis 
factor (TNF)-ɑ and interleukin 6 (IL)-6, with evidence 
suggesting that ROS, together with inflammatory 
cytokines, can cause vascular endothelial dysfunction 

and further accelerate the progression of ALI including 
ARDS (8-10).

Protein kinase C isozymes are a family of serine-
threonine kinases which play many important roles 
in various physiological processes, such as cell 
differentiation and proliferation, regulation of gene 
expression, modulation of ion channels, angiogenesis, 
contractility of vascular smooth muscle cells and 
extracellular matrix proteins (11, 12). It has been 
reported that ROS can stimulate the activation of PKCs 
(13). Meanwhile, activated PKC further aggravates ROS 
production through increasing NADPH-oxidases (NOX) 
activity (14). PKC θ, a member of the PKC family, is a 
pivotal mediator of T-cell receptor signaling and T-cell 
activation (15). PKC θ is also expressed in other types of 
cells, such as skeletal muscle and platelets, and plays a 
vital role in various physiological and pathophysiological 
processes (16)a novel member of the protein kinase C 
(PKC. PKC θ is confirmed to be involved in modulation 
of nuclear factor kappa beta (NF-κB) via translocation 
to the immunological synapses (17). Furthermore, 
increasing evidence suggests that PKC θ deficiency 
enhances insulin resistance, attenuates antigen-induced 
arthritis, and improves muscular dystrophy (18, 19). In 
addition, PKC θ knockout was observed to attenuate 
airway inflammation in the lung (20).
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Oleic acid-induced lung injury is commonly used 
in the study of experimental ARDS. The oleic acid-
induced ARDS exhibits a similar ALI to that caused by 
fat embolism in patients of orthopedic surgeries, which 
increases the mortality of patients (21). There are 
many similar pathological changes between ARDS and 
oleic acid-induced lung injuries, such as interstitial and 
intra-alveolar edema, hemorrhage, and intravascular 
coagulation (22). An increase in the number and activity 
of neutrophils and macrophages initiates oleic acid-
induced lung injury through increasing the production 
of free oxygen radicals and subsequent injury of 
endothelial cells and alveolar epithelial cells (23). 
Therefore, this study aimed to explore the effects of PKC 
θ gene knockout on an oleic acid-induced injury.

Materials and Methods
Materials

Oleic acid was obtained from Sigma-Aldrich 
Corporation (St Louis, MO, USA). Specific ELISA kits 
for the determination of TNF-α and IL-6 were obtained 
from Hefei Bomei Biotechnology CO., LTD, (Hefei, China). 
Kits for determination of SOD and MDA were provided 
by Nanjing Jiancheng Bioengineering Institute (Nanjing, 
China). Antibodies β-actin, PKC θ, HO-1, IKB α, p-IKB α, 
NF-κB, and p-NF-κB were purchased from Bio Basic Inc. 
(Canada).

Animals
C57BL/6 mice (6–8 weeks old) were purchased from 

Changsha Tianqin Biotechnology Co., Ltd (Changsha, 
China). PKC θ knockout mice (6–8 weeks old) were 
generated on a C57BL/6 background and obtained 
from Shanghai Genechem Co., LTD (Shanghai, China). 
All animals were bred in our animal laboratory at 
22±2 °C room temperature and a 12-hour light/dark 
alternate. Experimental procedures were approved 
by the Academic Experimental Animal Care and 
Use Committee of Wannan Medical College and in 
accordance with Chinese Community Guidelines for the 
use of Experimental Animals.

Induction of acute lung injury
After 2 weeks of acclimatization, the mice were 

weighed and received an intravenous injection of 0.1 
ml/Kg oleic acid using sterile syringes to be free from 
bacterial contamination. Four hours after administration 
of oleic acid, mice were anesthetized with sodium 
pentobarbital (50 mg/kg), and fasting blood samples 
were collected for biochemical analysis. 

Lung wet/dry weight ratio
Following sacrifice, the mice chests were cut, and 

bilateral lungs were exposed. Lung tissues were 
separated from the surrounding tissues and excised. 
After removing blood from the surface, the lung tissues 
were weighed and placed in an electrothermal oven to 
dry at 60 °C for 72 hr. Dried lungs were weighed for 
calculation of the lung wet/dry weight ratio.

Bronchoalveolar lavage fluid (BALF)
At the end of the experiment, the mice were 

anesthetized by an intraperitoneal injection of 

sodium pentobarbital (50 mg/kg). A small-caliber 
cannula was inserted into the trachea. The lungs were 
washed three times with 0.5 mL of PBS to collect 
BALF. Lymphocytes and neutrophils in the BALF were 
counted by an automatic blood cell analyzer. The BALF 
samples were centrifuged at 1000 g, 4 °C. Protein in the 
supernatant was determined with assay kits (Jiancheng 
Bioengineering Institute, Nanjing, China).

Determination of inflammatory cytokines
Levels of TNF-α and IL-6 in serum were measured 

by commercial specific ELISA kits according to the 
manufacturer’s instructions. 

Assessment of anti-oxidants 
To assess the change of anti-oxidants, malondialdehyde 

(MDA) level and superoxide dismutase (SOD) activity 
were determined in serum using assay kits from Nanjing 
Jiancheng Bioengineering Institute (Nanjing, China).

Analysis of histology 
At the end of the experiment, the lungs were 

harvested and fixed in 10% neutral formalin for 24 
hr. Subsequently, fixed tissues were dehydrated with 
different concentrations of ethanol in turn. After 
embedding in paraffin wax, tissues were cut into 5 μm 
sections for hematoxylin-eosin staining. Morphometric 
changes were observed under a light microscope.

Western blot
Lung tissues were separated and lysed in ice-

cooled lysis buffer (50 mmol/l Tris, 1 mmol/l sodium 
pyrophosphate, 0.1% SDS, 1% Triton X-100, 0.02% 
sodium azide, 150 mmol/l sodium chloride, 0.05% 
Sodium deoxycholate, 2 mmol/l phenylmethanesulfonyl 
fluoride). The proteins were obtained by centrifugation 
at 12000 g for 20 min at 4 °C. The proteins in the 
supernatants were electrophoretically separated 
by a sodium dodecyl sulphate polyacrylamide gel 
electrophoresis (SDS-PAGE), followed by transferring 
to nitrocellulose membranes. The membranes were put 
into 5% skimmed milk containing a primary antibody 
overnight at 4 °C. After rinsing with PBS, the membranes 
were incubated with a peroxidase-conjugated secondary 
antibody. Antigens were visualized by DAB staining (Bio 
Basic Inc., Canada).

Statistical analysis
The data are expressed as means ± SD. Statistical 

analysis was performed using an unpaired Student’s 
t-test or one-way analysis of variance (ANOVA) and 
corrected using a Bonferroni/Dunn test. P<0.05 was 
considered statistically significant. Analysis was 
performed using SPSS v 18.0 software (SPSS Inc., 
Chicago, IL, USA).

Results
Effects of PKC θ knockout on the lung injury induced 
by oleic acid

To investigate the functional role of PKC θ in the lung, 
PKC θ knockout mice were used to induce lung injury. 
Western blotting analysis showed no expression of PKC 
θ in the knockout mice (Figure 1C). Further, we explored 
the effects of PKC θ knockout on ALI induced by oleic 
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acid. The results show that the lung in WT mice exhibits 
a larger area of bleeding and darker bleeding spots than 
those in PKC θ knockout mice (Figure 1A). In addition, 
there is more sputum with red blood cells in the trachea 
of WT mice than that in PKC θ knockout mice (Figure 1A). 
Histological observation showed that PKC θ knockout 
had alleviated oleic acid-induced pulmonary interstitial 
edema and reduced infiltration of cell exudation in the 
interstitium and alveolar spaces when compared with 
the WT mice (Figure 1B).

Effects of PKC θ knockout on pulmonary capillary 
permeability

Pulmonary capillary permeability plays a vital role in 
ALI (24). Therefore, one of its hallmarks, the lung wet/

dry weight ratio, was determined. The results suggested 
that PKC θ knockout reduced lung weight/body weight 
ratio (Figure 2A) and led to a decrease in the lung wet/
dry weight ratio compared with the WT mice (Figure 
2B). Furthermore, the decreased protein concentrations 
in the BAL fluid were observed in the PKC θ knockout 
mice compared with the WT mice (Figure 2C).

PKC θ knockout reduces lung inflammation induced 
by oleic acid

PKC θ knockout significantly decreased the numbers 
of neutrophils (Figure 3A) and lymphocytes (Figure 3B) 
in the BAL fluid compared with the WT mice. In addition, 
PKC θ knockout reduced infiltration of neutrophils in the 
lung tissues (Figure 1B). Pathological changes of ARDS 
are associated with local and systemic inflammation. In 
this study, inflammation was assessed via measuring 
the levels of TNF-α and IL-6 in serum. PKC θ knockout 
significantly reduced the levels of TNF-α and IL-6 in 
serum (Figures 4A and 4B).

Reduction of oleic acid-induced oxidative stress
It is well known that free oxygen radicals are 

implicated in oleic acid-induced lung injury. Thus, we 
determined levels of SOD and MDA to evaluate the 
change of oxidative stress in this study. Our results 
indicate that PKC θ knockout significantly increased 
activity of SOD (Figure 5A) and decreased the MDA level 
(Figure 5B).

Effects of PKC θ knockout on expression of HO-1, p-NF-
κB, and p-IκB ɑ

To further elucidate the potential mechanisms of 
action of PKC θ knockout in ALI, levels of p-NF-κB 
(Figure 4C) and p-IκB ɑ (Figure 4D), and expression 
of HO-1 (Figure 5C) were determined using western 
blotting. Compared with the WT mice, PKC θ knockout 
significantly increased the expression of HO-1 in the 

 

  Figure 1. Effect of PKC-θ knockout on oleic acid-induced lung injury. 
(A) Feature of lung injury. (B) HE staining of lung tissues, Magnification 
is 400×. (C) Western blotting analysis of PKC θ

 

  Figure 2. Effect of PKC-θ knockout on pulmonary capillary permeability. (A) lung weight/body weight ratio. (B) wet/dry lung weight ratio. (C) 
Levels of protein in BALF. *P-value <0.05, **P-value<0.01 compared with WT mice

 

  
Figure 3. Effect of PKC-θ knockout on Inflammatory cells in BALF. (A) The number of neutrophils. (B) The number of lymphocytes. *P-value <0.05 
compared with WT mice
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lung (Figure 5D). Meanwhile, PKC θ knockout was also 
observed to reduce the relative levels of p-NF-κB and 
p-IκB ɑ (Figures 4E and 4F).

Discussion
ARDS results from alveolar and capillary injury and 

then causes interstitial pulmonary edema, which leads 
to pulmonary failure and high mortality (25, 26). Oleic 
acid-induced ALI exhibits similar pathological features 
to ARDS (22). In this study, ALI induced by Oleic acid 
was used to evaluate the effects of PKC θ knockout on 
ARDS in mice. The results show that PKC θ knockout 
attenuated oleic acid-induced lung injury in mice. PKC 
θ knockout was observed to decrease levels of IL-6, 
TNF-α, and MDA. Conversely, PKC θ knockout increased 
the activities of SOD in serum. Furthermore, our results 
indicate that PKC θ knockout up-regulated HO-1 
expression, and reduced levels of p-NF-κB and p-IκB ɑ 
in the lung.

ARDS is a severe clinical concern caused by various 
factors such as infection and shock. Oleic acid-induced 
ALI has been demonstrated to show many features 
similar to those in the clinical ARDS. Therefore, a model 
of ALI induced by oleic acid is commonly used in ARSD 
studies (22). ARDS is characterized by intra-alveolar 
edema, hemorrhage, and alveolar-capillary endothelial 
and epithelial destruction (27, 28). Consistent with 
previous studies (22, 29), our results suggest that oleic 
acid treatment exhibits these pathologic changes in the 
lungs of WT mice. However, PKC θ gene knockout was 
observed to relieve the alterations. Additionally, the 
alveolar-capillary endothelial and epithelial destruction 
increases pulmonary capillary permeability and plasma 
protein leakage. Depositions of exudative plasma 
proteins and cell debris on the alveolar wall lead to 
formation of hyaline membranes (28, 30). In the present 

study, PKC θ gene knockout significantly decreased 
the lung wet/dry weight ratio and level of protein in 
BALF, suggesting that PKC θ gene knockout attenuated 
the alveolar-capillary endothelial and epithelial injury 
induced by oleic acid.

Protein kinase C isozymes have been demonstrated 
to be implicated in various pathological processes such 
as inflammatory response, oxidative stress, diabetes, 
and thrombosis (31, 32). Functional mechanisms of PKC 
isoform are deduced from studies in pharmacological 
modulation of PKC activity (33, 34), together with gene 
knockout of PKCs (35, 36). PKC θ, a member of the PKC 
family, is implicated in the activation of various signaling 
cascades (37). Overexpression of PKC θ in platelets 
can regulate signal transduction required for platelet 
activation, aggregation, and hemostasis (38). A previous 
study showed that PKC θ can activate nuclear factor-
kappa B (NF κB) and activator protein 1(AP-1), thus 
stimulating the generation of interleukin 2 (39). NF κB 
has been reported to play a vital role in the regulation 
of inflammation. NF-κB is activated via phosphorylation 
by IκB ɑ. Activated NF κB further translocates into the 
cell nucleus and stimulates gene expression including 
TNF-ɑ and IL-6 (40). Furthermore, PKC θ gene 
knockdown decreases levels of IFN γ, IL-6, and TNF α, 
and ameliorates the inflammation responsible for liver 
injury (41). 

An excessive inflammatory response is responsible 
for the pathogenesis of ARDS via alveolar edema, 
hemorrhage, and hyaline membrane formation (42). 
Some studies have demonstrated that activated 
macrophages, microvascular endothelial cells, and 
alveolar epithelial cells trigger the production and 
release of pro-inflammatory cytokines such as IL-6 and 
TNF-α, expression of adhesion molecules and generation 
of ROS (43, 44). Furthermore, Neutrophil migration 
into the lung and infiltration exaggerates inflammatory 
response (45). Clinical and experimental data show that 
oxidative stress is involved in the pathogenesis of ARDS 
via ROS to destruct biological membranes, increasing 
leakage of plasma protein into the alveoli (46). In 

 

  

 

Figure 4. Effect of PKC-θ knockout on inflammation. (A) TNF α level in 
serum. (B) IL-6 level in serum. (C) Expression of p-NF κB in the lung. 
(D) Expression of p-IκB α in the lung. (E) Relative level of p-NF κB. 
(F) Relative level of p-IκB α. *P-value <0.05, **P-value <0.01 compared 
with WT mice

Figure 5. Effect of PKC-θ knockout on oxidative stress. (A) SOD activity 
in serum. (B) MDA level in serum. (C) Expression of HO-1 in the lung. 
(D) Relative level of HO-1. *P-value <0.05, **P-value <0.01 compared 
with WT mice
SOD: superoxide dismutase; MDA: Malondialdehyde
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addition, it has been reported that ROS can stimulate the 
activation of macrophages and neutrophils, increasing 
the expression of inflammatory cytokines and impairing 
vascular endothelial cells, which exacerbates ARDS 
(8, 10, 47, 48). Changes in the activities of SOD, c-Jun 
N-terminal kinase (JNK), and mitogen-activated 
protein kinase (MAPK) are involved in the regulation 
of inflammatory responses under oxidative stress (49). 
Meanwhile, several studies suggest that oxidative stress 
results from oxygen or inflammatory responses, and the 
release of inflammatory cytokines triggers oxidative 
stress via induction of ROS (50, 51). Heme oxygenase 
1 (HO-1) has been reported to exhibit anti-oxidant and 
cytoprotective roles (52). HO-1 is also demonstrated to 
play an important role in mediation of inflammation 
(53), and with evidence revealing that induction of HO-1 
suppresses NF-κB/IκB ɑ signaling (54). In the present 
study, our results show that PKC θ gene knockout 
decreased levels of IL-6, TNF α, and MDA in serum. In 
addition, PKC θ gene knockout was also observed to 
increase the activity of SOD, elevate expression of HO-1, 
and reduce levels of p-NF κB and p-IκB α. These findings 
suggest that PKC θ gene knockout attenuated oleic acid-
induced ALI by regulating inflammation and oxidative 
stress.

Conclusion
In summary, our results show that PKC θ knockout can 

relieve lung injury induced by oleic acid and decrease 
levels of hallmarks of pulmonary capillary permeability 
such as lung wet/dry weight ratio, number of neutrophils, 
and level of proteins in BALF. Furthermore, our data also 
revealed that PKC θ knockout improved oxidative stress 
and inflammation via elevating the expression of HO-1 
and down-regulating the NF κB/IκB α pathway. These 
findings suggest that PKC θ can be a therapeutic target 
for lung injury.
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