
        *Corresponding author: Sonam Bhatia. Department of Pharmaceutical Science, SHALOM Institute of Health and Allied Sciences, Sam Higginbottom University of 
Agriculture, Technology and Sciences (SHUATS), Naini, Prayagraj, India. Tel: +917986612056; Email: sonam.bhatia@shiats.edu.in

Iranian Journal of Basic Medical Sciences
ijbms.mums.ac.ir

Growing emergence of drug-resistant Pseudomonas  aeruginosa 
and attenuation of its virulence using quorum sensing inhibitors: 
A critical review 
Snigdha Bhardwaj 1, Sonam Bhatia 1*, Shaminder Singh 2, Francisco Franco Jr 3

1 Department of Pharmaceutical Science, SHALOM Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology 
  and Sciences (SHUATS), Naini, Prayagraj, India 
2 Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad - 121 001, Haryana, India 
3 Department of Chemistry, De La Salle University, Manila, Metro Manila, Philippines

A R T I C L E  I N F O A B S T R A C T

Article type:
Review article

A perilous increase in the number of bacterial infections has led to developing throngs of antibiotics 
for increasing the quality and expectancy of life. Pseudomonas aeruginosa is becoming resistant to all 
known conventional antimicrobial agents thereby posing a deadly threat to the human population. 
Nowadays, targeting virulence traits of infectious agents is an alternative approach to antimicrobials 
that is gaining much popularity to fight antimicrobial resistance. Quorum sensing (QS) involves 
interspecies communication via a chemical signaling pathway. Under this mechanism, cells work in 
a concerted manner, communicate with each other with the help of signaling molecules called auto-
inducers (AI). The virulence of these strains is driven by genes, whose expression is regulated by AI, 
which in turn acts as transcriptional activators. Moreover, the problem of antibiotic-resistance in case 
of infections caused by P. aeruginosa becomes more alarming among immune-compromised patients, 
where the infectious agents easily take over the cellular machinery of the host while hidden in the QS 
mediated biofilms. Inhibition of the QS circuit of P. aeruginosa by targeting various signaling pathways 
such as LasR, RhlR, Pqs, and QScR transcriptional proteins will help in blocking downstream signal 
transducers which could result in reducing the bacterial virulence. The anti-virulence agent does 
not pose an immediate selective pressure on growing bacterium and thus reduces the pathogenicity 
without harming the target species. Here, we review exclusively, the growing emergence of multi-drug 
resistant (MDR) P. aeruginosa and the critical literature survey of QS inhibitors with their potential 
application of blocking P. aeruginosa infections.
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Introduction
In the last few decades, there has been an alarming 

increase of reports documented for microbial infections. 
The mortality caused by pathogenic microorganisms that 
are currently targeted through known antimicrobials 
is also a matter of great concern as the microbial 
populations (bacteria, fungi, viruses, and parasites) 
have developed strategies to combat antimicrobial 
drugs worldwide. This has led to an ineffective 
treatment regime and resulted in the development of 
resistant strains of microorganisms causing deadly 
infections. Especially, these resistant microbes have 
shown fragile access in immune-compromised 
patients. In this category, Pseudomonas aeruginosa is 
more frequently seen to be associated with healthcare 
infections (1-3). The versatility of this pathogen to 
cause several infections is accepted worldwide as it 
majorly affects aged/immune-compromised patients 
(elderly and infant patients), HIV patients, individuals 
undergoing organ transplantation, and people with 
severe burns and wounds (4, 5). Unlike other bacteria, 
MDR opportunistic pathogen, P. aeruginosa, can grow 
in niches with high antibiotic pressure as well as may 
disturb the host-microbiota that may lead to an increase 

in bacterial virulence or pathogenicity. This causes 
the bacterium to survive in adverse conditions thus 
causing high morbidity and mortality due to antibiotic 
resistance (6, 7). Being a multidrug-resistant strain, P. 
aeruginosa is becoming more difficult to eradicate. The 
resistance acquired by this pathogen towards several 
antibiotics is majorly mediated through two types of 
mechanisms (8). The first mechanism involves a transfer 
of plasmid among bacteria carrying genes that express 
β-lactamases or aminoglycosides modifying enzymes 
(9). The second mechanism involves the mutation in 
the bacterial genome that causes a targeted mutation 
in the pathogen. For instance, the gyrase gene present 
in bacterial membranes is responsible for quinolone 
resistance due to variable expression of transport 
protein (regulation of efflux pumps and porins) (10). 
In both cases, the pathogen develops resistance 
against the antibiotics that affect bacterial growth; 
subsequently, bacteria develop their community for 
enhanced survival which serves as a shield reducing 
the antimicrobial compound’s activity. For this reason, 
a different approach is needed to be developed for 
blocking P. aeruginosa infections without interfering 
with the growth cycle of the pathogen. In recent times, 
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the scientific community identified a novel and efficient 
strategy called “anti-virulence strategy” that focuses 
on the inhibition of expression of virulence factors that 
causes acute and chronic infections, without killing a 
pathogen (11-13). This non-killing approach renders a 
low rate of resistance as the survival of pathogens will 
not be affected by the active drug itself. Thus, in turn, 
the bacterial community would not be increased to 
inactivate the active drugs (14, 15). There are several 
review articles in the literature which are based on QS 
in P. aeruginosa and its associated virulence. Recently, a 
study (2019) highlighted the importance of P. aeruginosa 
biofilm and its relationship with QS (16). Similarly, 
another study (2017) described the importance of 
bacterial QS that can be targeted to modulate virulence 
among pathogens (17). Along similar lines, a study 
(2017) also supports the role played by QS in P. 
aeruginosa virulence (18). On the other hand, recently 
a review (2019) highlighted the importance of naturally 
derived quorum sensing inhibitors (QSIs) in blocking 
different signaling pathways in P. aeruginosa (19). A 
systematic review of the various signaling pathways and 
QS regulators in P. aeruginosa was published by Venturi 
(2006) (20).

We have performed an in-depth literature survey on 
the QS process in P. aeruginosa and its regulation. In this 
review, we have compiled the data based on various 
statistical reports published on the growing emergence 
of resistance in P. aeruginosa among clinical samples in 
varied timelines. This study will help in understanding 
how resistance develops in this organism for different 
categories of antibiotics. In addition to this, the current 
scenario of resistance patterns is alarming and reflects 
the dire need to develop anti-pseudomonal drugs. We 
also tried to review and gather the literature on the 
investigated QSI compounds (chemical and natural 
origin) targeting LasR, RhL, Pqs, and biofilms to 
mitigate P. aeruginosa infections in an alternative way. 
This review will help the researchers working from the 
biological or chemical point of view to understand the 
growing prevalence of antibiotic-resistant P. aeruginosa 
and the ways to curb these resistant strains by a process 
of QS inhibition. It will indeed help clinicians and public 
health professionals to improve their knowledge of 
the sensitivity or susceptibility of different antibiotics 
against resistant strains of P. aeruginosa.

Prevalence of drug-resistant of P. aeruginosa
P. aeruginosa is an opportunistic microorganism 

that causes infection among ill patients, immune-
compromised patients, patients compromised by age 
(infant and elderly patients). Data from the National 
Nosocomial Infections Surveillance System from 
1986-2003 reported P. aeruginosa as the second most 
common cause of pneumonia (18.1%), the third most 
common cause of urinary tract infection (16.3%), and 
the eighth-most frequently isolated pathogen from the 
bloodstream (3.4%) (21). While the overall proportion 
of infections caused by P. aeruginosa remained stable 
during the 1986-2003 period, however, the proportion of 
resistant isolates had shown an alarming increase in the 
consequent years. P. aeruginosa resistance to imipenem, 
quinolones, and third-generation cephalosporins 
increased by 15.0, 9.0, and 20.0%, respectively. 
Similarly, a national surveillance study of intensive 
care unit (ICU) patients from 1993 to 2002, reported a 

significant increase in multidrug-resistance towards at 
least three to four agents like imipenem, ceftazidime, 
ciprofloxacin, and tobramycin. These infections are 
often problematic, life-threatening, and cause a large 
number of deaths because of their inherent ability 
to resist all classes of antimicrobial agents (22, 23). A 
study was conducted at National Taiwan University 
Hospital (NTUH) in 2006 where the PDR (pan drug-
resistant) strain of P. aeruginosa was isolated, this 
strain has shown resistance to all effective antimicrobial 
agents including cefepime, ceftazidime, imipenem, 
meropenem, piperacillin-tazobactam, ciprofloxacin, 
and levofloxacin leading to resistance of P. aeruginosa 
to all commercially available antimicrobial agents in 
Taiwan (24). Five years after this report, a national 
survey on infectious-diseases was conducted by the 
Infectious Disease Society of America (IDSA), Emerging 
Infections Network, in 2011, where it was found that 
more than 60.0% of participants are reported to have 
infections with a pan-resistant infectious agent, which 
is untreatable. Many public health organizations have 
already declared that the human population will face the 
“catastrophic consequences” of the antibiotic resistance 
era which will cause havoc for the human civilization 
(25, 26). Various global organizations like the Centers 
for Disease Control and Prevention (CDC), IDSA, World 
Economic Forum, and the World Health Organization 
(WHO) have announced antibiotic resistance to be a 
global public health concern (6).

Researchers (2012) observed that the prevalence 
of P. aeruginosa resistant isolates to antimicrobials 
has increased considerably and the resistance rate 
of P. aeruginosa to antimicrobials such as amikacin, 
ceftazidime, cefepime, imipenem, and ciprofloxacin was 
found to be 53.3%, 43.3%, 40.0%, 40.0%, and 33.3%, 
respectively (27). A study reported in 2014, describes 
the following resistance rates to cefepime 64.8%, 
piperacillin 45%, ciprofloxacin 38.9%, levofloxacin 
36.1%, gentamicin 37.3%, and amikacin 30% (28). 
In 2014, EARSS reports showed a high percentage of 
resistance in P. aeruginosa in eastern and southern 
parts of Europe especially in Germany, Hungary, and 
Slovakia (29). In 2015, another study conducted for 
three years from 2013 to 2015, examined P. aeruginosa 
isolates against various antimicrobial agents and 
reported increasing resistance to a variety of antibiotics, 
including third and fourth generation cephalosporins 
such as ceftazidime and cefepime, respectively. A 
high level of resistance has been reported to β-lactam 
antibiotics in the United States, Europe, and South 
America. In the research period, resistance developed 
by cefepime was significantly increased each year, i.e. 
31.6% in 2013, 44.2% in 2014, and 64.5% in 2015, 
whereas observed resistance to ceftazidime was 
59.8% in 2013, 37.3% in 2014, and 42.0% in 2015. The 
difference in resistance rate towards antimicrobials 
usually relates to the frequency of use and prescribing 
practices of hospitals (30). As reported in a study in 
2015 on the prevalence of antibiotic resistance among 
the P. aeruginosa population, statistics have shown that 
the highest resistance is produced against quinolones 
including ofloxacin (61.3%), ciprofloxacin (60.0%), and 
levofloxacin (56.4%). Secondly, the aminoglycosides 
class of compounds (e.g., amikacin and gentamicin) have 
shown higher rates of resistance to P. aeruginosa (31). In 
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2016, a study was conducted on patients admitted to the 
ICU of the Tertiary Care Hospital in eastern India for one 
year (2012-13). The prevalence found among patients 
to develop nosocomial infections was 24.3% where UTIs 
were predominant in patients followed by respiratory 
tract and skin infections (32). A study (2016) reported 
low to moderate rates of drug resistance to commonly 
used anti-pseudomonal drugs in P. aeruginosa isolates 
ranging from 4.9% to 30.6%. P. aeruginosa showed 
resistance towards piperacillin-tazobactam, ticarcillin, 
imipenem, cefepime, amikacin, and meropenem with a 
prevalence of 4.9%, 22.3%, 19%, 8.3%, 7.4%, and 30.6%, 
respectively, irrespective of the site of infection. The 
prevalence of multidrug resistance was 10.7% (33). A 
study (2017) reflected an increased percentage of drug-
resistance in P. aeruginosa in patients with community-
acquired pneumonia (CAP) (34).

A study by Lila et al. (2017) showed an increase of P. 
aeruginosa carbapenem resistance from 2013 to 2015 
for imipenem (25.2% in 2013, 26.5% in 2014, and 
37.7% in 2015) and meropenem (20.1% in 2013, 23.4% 
in 2014, and 38.3% in 2015) (35). Similarly, increased 
rates of imipenem resistance among P. aeruginosa 
(10.2% in 2013, 31.6% in 2014, and 22.1% in 2015) were 
reported in Croatia, studied by Barsic et al. (2004) (36). 
Benie et al. (2017) evaluated P. aeruginosa multidrug-
resistant (PAMDR) contaminating animal products. All 
strains of P.aeruginosa isolated from bovine meat, fresh 
and smoked fish expressed resistance to almost all 
antibiotics. The prevalence of P.aeruginosa multidrug-
resistant was 47.8%, 33.1%, and 20.0%, respectively, in 
bovine meat, fresh fish, and smoked fish. The percentage 
of resistance showed by P. aeruginosa strains was 98.4% 
for aztreonam, 51.4% ticarcillin-clavulanic acid, 50.4% 
ticarcillin, 31.4% piperacillin, 33.6% ciprofloxacin, 
17.0% cefepime, 6.9% ceftazidim 7.2% imipenem, 
4.5% colistin and 0.0% fosfomycin (37). In 2017, the 
Government of India declared P. aeruginosa as one of 
the most important pathogens in National Programme 
for the Containment of Antimicrobial Resistance (5 Year 
plan, 2012-2017) under National Centre for Disease 
control. In 2017, WHO published a list of pathogens in 
which carbapenem-resistant P. aeruginosa stands at the 
second position as critical pathogens. Among different 
anti-pseudomonas drugs tested, interquartile range 
showed that almost all are highly susceptible to colistin 
(96.25-100) whereas less susceptible to gentamicin 
(24-46.5), ceftazidime (31-55), and cefepime (26-
58.75). Under Carbapenems such as imipenem (43-
72.5) and meropenem (33-69) interquartile range was 
observed which were found moderately susceptible 
(38-43). In 2018, another investigation was conducted 
by Lila et al. (2018) on P. aeruginosa isolates at the 
University Clinical Center of Kosovo (UCCK) using 
pulse-field gel electrophoresis (PEGE) for identification 
of anti-microbial susceptibility. The level of resistance 
was found to be lowest for carbapenems and highest 
for aminoglycosides. The results exhibited a high 
sensitivity of amikacin (52.7%), gentamicin (56.6%), 
and tobramycin (54.5%) towards P. aeruginosa. In the 
same study, piperacillin-tazobactam showed resistance 
ranges from 26.6% to 44.1% (44). Andrea et al. (2019) 
observed the prevalence and antibiotic resistance 
profiles of P. aeruginosa. The samples were isolated 

from healthy captive ophidians and also correlated the 
statistical associations with farming conditions. From 
this study, the prevalence of multidrug-resistant P. 
aeruginosa strains, as well as strains isolated from young 
samples and adult samples, were found to be 35.5% 
and 59.9% respectively where widespread resistance 
has been observed for cephalosporins, polymyxins, and 
sulfonamides (45).

Pathogenicity and virulence of P. aeruginosa
Microbiology

P. aeruginosa is a Gram-negative, non-fermentative, 
rod-shaped bacterium, a member of the γ-subdivision 
of the Proteobacteria (26). P. aeruginosa cells measure 
0.5 to 1.0 μM by 3 to 4 μM. They are motile due to 
the presence of one or two polar flagella, grow on 
a wide variety of culture media over a wide range 
of temperatures ranging from 0–42 °C. The optimal 
temperature required for growth is 37 °C, which is 
also the normal human body temperature. It is a strict 
aerobe but can grow anaerobically in a nitrate-rich 
medium. It forms colonies that appear colored according 
to the pigment overproduced like the production of 
pigments a) pyocyanin, responsible for bluish-green, b) 
fluorescein, responsible for greenish-yellow color, and c) 
phenazine, a yellow color water-soluble pigment (46). It 
has been recognized as a ubiquitous organism because 
of its extremely ordinary survival and adaptation 
abilities in a wide array of environmental conditions. 
As an opportunistic human pathogen, P. aeruginosa has 
a remarkable capacity to cause diseases in susceptible 
hosts. It is the major colonizing microbial pathogen for 
cystic fibrosis (CF) patients and a common infectious 
agent in nosocomial infections, in infections of patients 
with severe burns, cancer, transplantation, AIDS, and 
other immuno-compromising conditions. P. aeruginosa 
is also noted for its conversion from non-mucoid 
(environmental) to mucoid (clinical) phenotype and its 
resistance to various antibiotics. P. aeruginosa has been 
found to cause a variety of infections in clinical practice 
besides chronic CF lung infection, including common 
acute septicemia from a burn or surgical wound 
infection, urinary tract infection, corneal ulceration 
(from wearing contact lenses), endocarditis (caused 
by intravenous drug use, etc.), and pneumonia (from 
use of a ventilator and endotracheal tube) (47-49). 
The morphology of P. aeruginosa is diagrammatically 
represented in Figure 1. 

Epidemiology: nosocomial infections caused by P. 
aeruginosa

P. aeruginosa is a common cause of hospitalized 
infections in immune-compromised patients. The 
major source of infection is medical equipment and 
cross colonization from other patients. This bacterium 
contaminates the medical devices and forms biofilm 
which poses a serious problem to the patients. For 
instance, patients may develop catheter-associated 
urinary tract infections (CAUTIs) as P. aeruginosa forms 
a biofilm on the facets of indwelling catheters. The 
colonial pathogen causes direct damage to the host 
tissue and increases the bacterium’s competitiveness 
(50, 51). P. aeruginosa can infect frequently the 
respiratory tract, blood cells, urinary tract, ear, and soft 
skin tissues. However, eyes, heart, CNS, bones, and joints 
are among the sites where the chances of infection are 
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rare. The main cause of infection at these sites is due to 
trauma following surgery or by the over usage of a drug 
or any other thing that makes the tissue vulnerable at an 
immune-compromised state (52, 53). 

Hospital-acquired pneumonia
Hospital-acquired pneumonia is the most common 

life-threatening infection majorly associated with 
mechanical ventilation and secondly with ICU in 
hospitals. Ventilator-associated pneumonia (VAP) 
usually occurs in patients who stay on ventilators for 
more than 48 hr causing a significant increase in the 
duration of stay in hospitals cost and death rate. VAP 
caused by P. aeruginosa is associated with trachea-
bronchial colonization which is very difficult to eradicate 
with conventional antibiotics due to the involvement 
of complex genes in drug resistance, which leads to 
higher case fatality rates (54-58). P. aeruginosa is also 
considered to be a major cause of permanent blocking of 
the airways of CF patients, which results in recurrence 
of lung infections and also decrease in lung function, 
increasing morbidity and mortality rates (59-61). The 
infection is mainly associated with a genetic mutation 
in a protein namely cystic fibrosis transmembrane 
conductance regulator (CFTR). CFTR is a chloride 
channel that maintains homeostasis in epithelial 
cells. The disruption in the regulation of chloride 
ion transport across membrane results in impaired 
mucociliary clearance due to an increase in sodium 
absorption, causing obstruction and mucus hypoxia 
hence supports colonization of P. aeruginosa. Patients 
with chronic obstructive pulmonary disease (COPD) 
are also susceptible to respiratory tract infection by P. 
aeruginosa and show similar symptoms to CF patients 
(62-65). In addition, various studies reported that P. 
aeruginosa produces Pyoverdine (a siderophore, ion-
chelating molecule) (66, 67) which functions as a signal 
molecule since it persuades the expression of virulence 
and biofilm formation causing chronic lung infections in  
patients with CF (68, 69). 

Blood infections
Although very few studies reported different 

sources of infection for bloodstream infections (BSI) 
with P. aeruginosa, it is considered to be a serious life-
threatening condition and a major cause of the increased 

rate of morbidity and mortality, as the incidence of BSI 
caused by P. aeruginosa is increasing. One of the studies 
reported that respiratory tract and central venous 
catheters were found to be the most frequent sources 
of BSI. Other risk factors include immuno-compromised 
patients in ICU, lung cancer, septic shock, pneumonia, 
having severe disease, delayed antimicrobial therapy, 
and multidrug resistance (70-72).

Urinary tract infections
Urinary Tract Infections (UTIs) are also another 

common type of acute and chronic infections caused by 
P. aeruginosa, they generally occur after catheterization, 
instrumentation, or surgery. Urinary tract catheterization 
is known to be a major cause of nosocomial acquired-
UTI by P. aeruginosa as the pathogen utilizes catheters 
as a medium of bacteria entry resulting in attaching to 
catheter surface and biofilm formations (73-77).

Skin and soft tissue infections
Multidrug resistant P. aeruginosa is the most 

common cause of severe wound and burn infections 
and is associated with high morbidity and mortality 
rates worldwide. Various studies reported nosocomial 
outbreaks of the pathogen in surgical wounds resulting 
in post-operative wound infections (78-80). Some 
severe soft tissue infections have also been investigated 
which are associated with P. aeruginosa such as follicular 
dermatitis or folliculitis (a condition described as an 
itchy rash with a red base and white pustules), nail 
disease (onychosis) also known as green nail syndrome, 
paronychial infection (associated with prolonged 
exposure to moisture), onycholysis and onychomycosis 
in post-surgical patients, burn wound sepsis, pyoderma, 
dermatitis, and ecthyma gangrenosum. Mild skin 
infections have been reported in some previously healthy 
persons caused by P. aeruginosa adulteration in swimming 
pools, hot tubs, and other water sources (81-86).

Eye infections 
P. aeruginosa is the main root of bacterial keratitis 

and it occurs in patients with several medical conditions 
such as pre-existing ocular diseases, post-ocular 
surgery, and patients using contact lenses. After 
adhesion, P. aeruginosa damages corneal epithelial cells 
and internalize rapidly. The contact lens may damage 
the epithelial surface of the cornea resulting in corneal 
keratitis in case of prolonged use or contamination of 
contact lens and improper handling or care by patients. 
Some studies reported that there is a rare occurrence of 
infections like endophthalmitis and neonatal ophthalmia 
in some patients caused by P. aeruginosa (87-91).

Ear infections  
It is well known that P. aeruginosa is the most common 

cause of ear infections namely otitis externa (swimmer’s 
ear), which involves inflammation of external auditory 
occurring on prolonged exposure to moisture or 
associated with swimming in contaminated recreation 
pools and/or the insertion of foreign objects such as 
cotton buds, etc. Other types of infections caused by the 
pathogen are canal chronic supportive otitis media and 
malignant external otitis (92-94).

Miscellaneous
Other than above mentioned common infections, 

 

  
Figure 1. Morphology of Pseudomonas aeruginosa representing cell-
associated and extracellular virulence factors
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P. aeruginosa also contributes to some rare infections. 
The infection of the blood caused by any bacteria is 
called bacteremia and septicemia and the common 
symptoms observed in Pseudomonas infection of lungs 
and blood are fever, chilling, fatigue, muscle and joint 
pain, and cough with or without sputum accompanied 
by difficulty in breathing. P. aeruginosa also causes 
meningitis and brain abscess, infections related to the 
central nervous system, which are rare and secondary 
to neurosurgery or trauma. The pathogen also causes 
infections affecting bones and joints resulting in the 
development of several rare disease conditions such as 
steno-articular pyoarthrosis, vertebral osteomyelitis, 
symphysis pubis infection, osteochondritis of the foot, 
and chronic contiguous osteomyelitis. Rarely seen in 
drug addict patients, P. aeruginosa affects the heart 
leading to endocarditis (95-100).

Virulence factors in P. aeruginosa
The bacteria adhere to the host tissue with the help 

of pili, flagella, exo-enzymes, and exopolysaccharides. 
Colonization of this bacterial species is promoted 
by glycoprotein consisting of N-acetyl glucosamine 
(GlcNAc), N-acetylgalactosamine (GalNAc), D-mannose, 
L-fucose, and N-acetylneuraminic acid (NeuAc) sugar 
motifs (46). The various virulent factors which are 
responsible for the pathogenicity of P. aeruginosa are:

a) Protease, which causes ulceration and 
infections.

b) Exotoxin spread infections in the wounds of 
burn patients.

c) Phospholipase, which is associated with chronic 
pulmonary colonization.

Exotoxin A has also been shown to induce host cell 
death by apoptosis; it is an immunotoxin that targets 
tumor cells for anticancer therapy.

d) Lipases and phospholipases break down 
surfactant lipids and the phospholipids of host cell 
membranes.

e) The blue-green pigment pyocyanin gives P. 
aeruginosa colonies their distinct color and causes 
oxidative stress to the host, disrupting host catalase, and 
mitochondrial electron transport.

f)  Purified pyocyanin has been shown in vitro to 
induce apoptosis in neutrophils (101,102).

P. aeruginosa causes acute infections mainly in three 
steps, i.e., adhesion, invasion, and systemic spreading. 
It utilizes cell-associated and extracellular virulent 
factors to attack the host cell which causes damage to 
the host skin and reduces the efficiency of the immune 
system. In immunocompromised patients, the pathogen 
adheres to epithelial cells and utilizes sugar-binding 
proteins such as fimbriae (Polar, Type IV pili), flagella, 
and lectins (LecA and LecB) for the production of 
elastases, LasA, and LasB which exert cytotoxic effects 
on respiratory cells and promote bacterial adhesion to 
airway mucosa. These produced enzymes, hydrolase 
elastin, an essential protein of connective tissue that 
is considered to be an important factor of lung innate 
immunity (103-108). Also, P. aeruginosa facilitates 
the production of rhamnolipids and hemolytic 
phospholipases C responsible for the dissolution of 
phospholipids (phosphatidylcholine) present in the 
eukaryotic cell membrane and lungs. Moreover, the 
pathogen synthesizes the redox toxin pyocyanin which 

obstructs multiple mammalian cell functions such as 
cell respiration, metal-ion uptake, etc (105,109,110). 
After colonization at the site of infection, the same can 
spread the infection in the whole body through systemic 
circulation using the same virulence factors involved in 
adhesion and invasion steps leading to the development 
of biofilms (a heterogeneous structure consists of 
exopolysaccharide, rhamnolipids, extracellular DNA 
and proteins) at the colonized sites of host tissues with 
improved adhesion and stabilization, which causes 
the establishment of chronic infection and creates a 
physical barrier to several biocides, the immune system, 
UV light and antimicrobial agents (105). Moreover, the 
overall bacterial community formed in biofilm is not 
homogeneous. The cells present in the middle of the 
heterogeneous matrix are dormant and comparatively 
less metabolically active than the cells located on the 
surface due to low access to oxygen. Taking this fact 
into consideration, the effect of antibiotics becomes less 
effective as these agents can only kill pathogens with an 
active metabolism, for instance, cells on the surface of the 
biofilm. The bacterial cells attached to the inner layer of 
the biofilm remaining unaffected by antibiotics are then 
called persisters. As the concentration of antibiotics 
reaches sub-inhibitory levels, the persisters tend to 
switch their metabolic pathway on to repopulate the 
tissue causing the unmanageable infections which are 
very difficult to eradicate (111-113). Besides, patients 
with severe underlying diseases reducing physical 
(burn patients, mechanically ventilated patients) 
and/or immune defense mechanisms (neutropenia, 
AIDS patients) are at serious risk for the evolution of 
localized infections toward systemic disease, which 
is associated with dramatically elevated mortality. 
Just as varied as the clinical diseases caused by P 
aeruginosa, this typical nosocomial pathogen possesses 
and produces a large variety of both cell-associated 
and extracellular virulence factors. It is important to 
realize that the pathogenesis of P. aeruginosa is not 
related to a single virulence factor, but the precise and 
delicate interplay between different factors, leading 
from efficient colonization and biofilm formation to 
tissue necrosis, invasion, and dissemination through the 
vascular system, as well as activation of both local and 
systemic inflammatory responses. Extensive studies 
have shown that P. aeruginosa is armed with a large 
arsenal of virulence factors (described in the following 
paragraphs), enabling it to breach the human innate 
immune system, to intoxicate host cells, and to modulate 
human adaptive immune mechanisms, serving the goal 
of establishing a systemic infection or more localized 
chronic colonization (114, 115). In this review, we will 
discuss the various virulence determinants that have 
been suggested to play a role during the pathogenesis 
of P. aeruginosa infections. The various virulence factors 
produced by P. aeruginosa have been diagrammatically 
represented in Figure 2.

Mechanism of antibiotic resistance development by P. 
aeruginosa

Generally, the three major mechanisms of antibiotics 
resistance in P. aeruginosa can be classified into intrinsic 
resistance, extrinsic (acquired) resistance, and adaptive 
resistance.

Intrinsic resistance
The intrinsic resistance mechanism in P. aeruginosa 
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involves restricted outer cell membrane permeability 
and expression of efflux pumps that expel antimicrobial 
agents out of the cell and also promote the production of 
antibiotics-inactivating enzymes (116). The four major 
mechanisms responsible for intrinsic resistance of P. 
aeruginosa towards antibiotics are 1) target mutation, 
2) restrict cell wall uptake, 3) efflux pump, and 4) drug 
inactivation.

Extrinsic or acquired resistance
In this mechanism, bacteria attain resistance by 

mutational changes at the genetic level via horizontal 
gene transfer. The extrinsic mechanism significantly 
contributes to the development of multi-drug resistant 
pathogens leading to extreme difficulty in the eradication 
of microorganisms, which results in boosting cases 
of persistent infections (117, 118). A study reported 
that there are two ampG homologs in P. aeruginosa 
namely ampG (PA4393) and ampG1 (PA4218). ampG 
is only a functional protein and its inactivation by 
mutational change leads to a non-inducible and low-
level β-lactamase expression (119).

Adaptive antibiotic resistance
This type of resistance mechanism is associated with 

increased ability of the pathogen for survival against 
antibiotics attack due to transient alterations in gene 
expressions in response to environmental stimuli and 
the mechanism gets reversed when the stimuli are 
removed. In P. aeruginosa to represent the adaptive 
resistance, the best-mentioned mechanisms are biofilm 
formation and development of persisters leading to 
persistent infections in CF patients (120, 121).

• Biofilm formation
Biofilms are specific and organized communities of 

cells under the control of signaling molecules, rather 

than random accumulations of cells resulting from cell 
division. These biological communities can be embedded 
in an extracellular matrix that is self-produced. Biofilms 
may help maintain the role of bacteria as pathogenic 
by evading host immune mechanisms, resisting 
antimicrobial treatment, and withstanding competitive 
pressure from other organisms. Consequently, biofilm-
related infections are difficult to treat as they are less 
sensitive to anti-microbial agents. Biofilm production 
is also associated with a high level of antimicrobial 
resistance of the associated organisms (122-125).

• Persistent cell-induced resistance
This involves the formation of bacterial persister cells 

in the presence of high concentrations of antibiotics. 
Though, these persister cells (phenotypic variant) are 
not genetically resistant to antibiotics but are formed 
as a result of the heterogeneous response to the 
environment among the bacterial community which is 
genetically identical (115, 126-129).

Biofilms of P. aeruginosa
Biofilms are communities of microorganisms 

protected by a self-synthesized layer of complex 
polysaccharides, proteins, lipids, and extracellular 
DNA, collectively called the extracellular polymeric 
substance (130). Being in a biofilm, microbes are 
covered by a lot of advantages, including, but not limited 
to physical protection from the host immune system 
and antimicrobials/antibiotics, retention of water 
and tolerance to desiccation, nutrient sorption and 
storage, high extracellular enzymatic activity, adhesion 
to the infection site, and cell aggregation leading to 
coordination of virulence factor expression via QS (131-
133). Particularly troubling to the medical field, it has 
been estimated that as much as 80.0% of all human 
bacterial infections are biofilm-associated, including 

 

  Figure 2. Schematic representation of key virulence factors of Pseudomonas aeruginosa 
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more than 90.0% of all chronic wound infections 
(134, 135). Additionally, the biofilm mode of microbial 
life is responsible for up to a 1000-fold increase in 
antibiotic tolerance due to the physical impedance 
and enzymatic inactivation of the drugs, coupled with 
lowered metabolic rates in many biofilm-associated 
cells. Thus, biofilm infections are highly recalcitrant 
and are associated with chronic, non-healing infections 
(136, 137). Biofilms cause clinical problems of concern 
because they increase resistance to antifungal therapy; 
one hypothesis of the mechanism of biofilm resistance is 
the presence of the matrix that restricts the penetration 
of drugs through the formation of a diffusion barrier 
and only the most superficial layers are in contact with 
lethal doses of antibiotics (138). P. aeruginosa can form 
a biofilm in various environments. Biofilms have been 
known to have a rather complex structure with (to a 
certain level) differentiated bacterial populations and 
increased resistance against hostile environmental 
factors, including host immune mechanisms and 
treatments such as antibiotics. Evidence indicates 
that P. aeruginosa forms a biofilm in CF lungs where 
the bacterium lives in an anaerobic environment, as 
opposed to the aerobic biofilm formed in laboratory 
conditions. The biofilm mode of growth is recognized as 
an important bacterial trait that is relevant to infections 
(122,139). The biofilm formed by P. aeruginosa is shown 
in Figure 3.

Many infections involve the formation of bacterial 
biofilms, which are bacterial communities that settle and 
proliferate on surfaces and are covered by exopolymers. 
Once established, biofilms are difficult to eradicate and 
become a source of secondary infection. The dose of 
antibiotics needed in this situation will often exceed 
the highest deliverable dose, which makes efficient 
treatment impossible (140).

Role of quorum sensing in P. aeruginosa virulence 
Several new approaches are being actively developed 

for curbing P. aeruginosa infections over conventional 
antibiotic chemotherapy in clinical practice. Some of 
them are based on QS and biofilm inhibition, which is 
characterized under anti-virulence strategies.

Quorum sensing mechanism
QS phenomenon involves microbial behaviors or 

responses that are governed by microbial cell density. 
This mechanism occurs in both Gram-positive as well as 
Gram-negative bacteria. Such community behaviors are 
usually determined by secreting signaling molecules, 
so-called auto-inducers (AIs), accumulation of which 
is a measure of cell density and nutrient concentration 
such as iron and phosphate. QS has a pivotal role in 
biofilms of all kinds (141). Bacteria produce and release 
small diffusible molecules, usually termed signals, 
which have two main consequences. First, the uptake 
of these molecules into cells regulates (auto-induction) 
a whole variety of behaviors, including the production 
of a range of exofactors that are released from the 
cells to aid growth, motility, and/or biofilm formation. 
Second, the uptake of these molecules also leads to an 
increase in the production of the signal molecule itself 
(auto-regulation). The production of these signals or 
autoinducer molecules, therefore, leads to positive 
feedback at high cell densities, which results in a 
considerable increase in the production of signal and 
QS controlled factors (Figure 2). The hypothesis here 
is that producing certain extracellular factors is most 
beneficial at high cell densities and that QS provides a 
mechanism that allows cells to increase the production 
of extracellular factors at high cell density (142-144).

In many cases, autoinducers and other molecules are 
not only responsible for same-species communication 
but also for the more complex interspecies cross-talk. 
The diversity of inter-kingdom signaling occurring in 
a myriad of environments has been classified into four 
categories:

(1) One-way sensing: one organism senses and 
responds to a diffusible signal produced by a second 
organism;

(2) Co-opting for a signal: one organism uses the signal 
produced by another to regulate its gene expression;

(3) Modulation of a signal: one organism alters 
the production or stability of a signal from another 
organism; and 

(4) Two-way communication: multiple signals are 
exchanged between organisms (145) as shown in Figure 4.

 

  

Figure 3. Pseudomonas aeruginosa biofilms confocal image (surface 
material: coverslip, taken by Dr Shaminder Singh using a Nikon A1 
Confocal Laser Microscope System)

 

  

Figure 4. Examples of uni and bi-directional signaling interactions
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Quorum sensing in P. aeruginosa
The behavior of P. aeruginosa is monitored by a 

complex regulatory mechanism called Quorum sensing 
(QS) in acute and chronic infections (12). The co-
ordination of specific gene expression in the community 
involves the interaction of diffused molecular signals. The 
quorum-sensing system depends on 3 basic principles 
in the bacterium. First, the production of AIs also called 
signaling molecules by the bacterial population. At low 
cell density, these signaling molecules diffuse away 
and therefore are present at concentrations below the 
threshold required for detection. At high cell density, the 
cumulative production of signaling molecules results 
in high concentration locally facilitating detection 
and response. Second, these AIs are detected by the 
receptors present in the cell (cytoplasm or membrane). 
Third, the detection of AIs facilitates AI production to 
potentiate the expression of genes. This feed-forward 
auto-induction loop promotes the development of the 
population (146-148). In P. aeruginosa, the quorum-
sensing circuit is controlled by the expression of gene 
systems viz. four different QS channels interlinked to each 
other for disseminating virulence, biofilm production, 
and synthesis of signal molecules. The channels are 
las, Rhl, Iqs, and Pqs where these systems employ 
transcriptional regulators such as LasR, RhlR, IqsR, and 
PqsR, respectively (also known as Multiple virulence 
factor regulator, MvfR). This MvfR binds to specific AIs 
to aggravate the expression of selected genes to cause 
virulence. The expression of different QS systems took 
place in response to the varying levels of cell density 
(Figure 4). Furthermore, the las, rhl and Pqs based 
systems coordinate biofilm formation. The las system 
utilizes N-(3-oxododecanoyl)-L homoserine lactone 
(3-oxo-C12-HSL) as a signal molecule that induces the 
expression of LasA and LasB elastases, alkaline protease, 
MvfR, RhlR, IqsR, and the cognate synthetase LasI. The 
Rhl system uses a molecule of N-butanoyl-L-homoserine 
lactone (C4-HSL) as an auto-inducer (belonging to an 
acyl-homoserine lactone (AHL)) which facilitates the 
synthesis of rhamnolipids, LasB elastase, pyocyanin, 
hydrogen cyanide RhlI (related signal molecule 
biosynthetic protein), and down-regulation of mvfR. 
This chemical triggers the production of inflammatory 

mediators. However, in the case of chronic infections, 
the rhl system is expressed and maintained for a longer 
duration (149-151). The recently discovered Iqs system 
employs 2-(2-hydroxyphenyl)-thiazole-4-carbaldehyde 
(IQS), which is supposed to regulate the Pqs system 
(152). The Pqs system makes use of quinolone signals 
(QS) molecule which helps in the synthesis of pyocyanin, 
hydrogen cyanide, as well as LecA lectin, the enzyme 
required for Pqs biosynthesis and the expression of RhlR 
and LasR. Along with the production of acyl-homoserine 
lactone as QS signals in P. aeruginosa, the other class of 
autoinducers is 4-hydroxy 2-alkyl quinolones (HAQs) 
and derivatives of 4-hydroxy-2-heptylquinoline (HHQ), 
including di-hydroxy derivatives like 2-heptyl-3,4-
dihydroxyquinoline (152-155). All the different types 
of QS mechanisms such as lasR, rhls, and Pqs have been 
depicted in Figure 5, 6, and 7, respectively. 

Quorum sensing inhibition as an anti-virulence 
strategy

QS is known to be an extremely important mechanism 
in the regulation of virulence factors as well as the 
formation of biofilms so it has become a potential target 
to minimize drug resistance during the treatment. 
Various in vivo studies showed that strains lacking in the 
expression of transcriptional regulators or auto-inducer 
(AI) biosynthetic pathway give rise to lower mortality 
of mice as compared with the animals treated with wild 
type of P. aeruginosa. Three different approaches can be 
considered while designing QSIs such as signal molecule 
inactivation, inhibition of AI syntheses, and interference 
with transcriptional regulators (156-158). Various 
studies have been conducted targeting QS inhibition 
as an anti-virulence strategy against various resistant 
pathogens including P. aeruginosa. For instance, a study 
(2015) shows that novel N,N-disubstituted biguanides 
were found to have QS inhibition activity against 
Chromobacterium violaceum (159). In another study by 
Singh S, et al. (2016), phenolic compounds from ginger 
rhizomes exhibited a QS inhibitory activity against C. 
violaceum and P. aeruginosa (160). Furthermore, in a 
study based on in silico docking, ADME, and toxicity, aryl 
glycoxamide derivatives were found to have substantial 
potential to develop as anti-virulent agents to inhibit 
QS in P. aeruginosa and E. coli (161). In another report, 
molecular docking studies were carried out for novel 

 

  
Figure 5. Different quorum sensing systems in Pseudomonas 
aeruginosa 

Figure 6. Diagrammatic representation of the effect of N-(3-
oxododecanoyl)-L-homoserine lactone (3O-C12-HSL) signaling 
molecule on the LasR system
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1,8- Naphthyridine derivatives and showed moderate to 
good anti-bacterial activity tested against various strains 
such as P. aeruginosa, E. coli, Staphylococcus aureus, and 
Bacillus subtilis (162). Thus, these findings make a basis 
to consider the QS mechanism as a potential target for 
anti-virulence strategy.

Targeting quorum sensing proteins is a remedial 
solution to multi-drug resistant  strains
Autoinducers involved in quorum sensing of P. 
aeruginosa

QS is a process in which both Gram-positive and Gram-
negative bacteria monitor their species, modulate intra- 
and interspecies cell to cell communication, control 
expression of specific genes in response to fluctuation 
in cell population density and regulate diverse 
physiological functions by releasing chemical signaling 
molecules known as autoinducers (AI), example N-acyl-
homoserine lactone (AHL). Table 1 (entry 1-9) shows a 
different kind of AI released during QS (163, 164).

Chemical classes of compounds that inhibit quorum 
sensing in P. aeruginosa

P. aeruginosa contains an MvfR QS system. These 
systems can be targeted to attenuate the virulence of P. 
aeruginosa. Some research groups have found that the P. 
aeruginosa mutants lacking the las gene are a-virulent 
type and unable to cause pneumonia. Rhl mediated 
QS inhibition includes the rhlR encoded putative 

 
Figure 7. Representation of the effects of Pqs quorum sensing in 
virulence production

Entry Structural Analogue of Homoserine lactone (AHL) Name of Analogue 

1 

 

N-butanoyl-homoserine lactone (C4-HSL) 

2 

 

N-3-hydroxybutanoyl-homoserine lactone (3OHC4-HSL) 

3 

 

N-hexanoyl-homoserine lactone (C6-HSL) 

4 

 

N-3-oxohexanoyl-homoserine lactone (3Oxo-C6-HSL) 

5 

 

N-octanoyl-homoserine lactone (C8-HSL) 

6 

 

N-3-oxooctanoyl-homoserine lactone (3Oxo-C8-HSL) 

7 

 

N-decanoyl-homoserine lactone (C10-HSL) 

8 

 

N-3-oxodecanoyl-homoserine lactone (3-Oxa-C10-HSL) 

9 

 

N-3-oxododecanoyl-homoserine lactone (3-Oxo-C12-HSL) 
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Table 1. Different analogs of Acyl Homoserine Lactone (AHL) 
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transcriptional activator, RhlR, and rhlI encoded putative 
AI synthase, RhlI. A second P. aeruginosa Auto-inducer 
(PAI-2), N-butyryl homoserine lactone, was shown to 
re-store rhamnolipids production in a P. aeruginosarhlI 
mutant and also require rhlI for its synthesis. Some 
compounds also have been found that can act as 
inhibitors of both Las and Rhl mediated QS and could 
be beneficial to curb the pathogenesis of P. aeruginosa 
(165). In contrast, the Pqs system is associated with 
QS through quinolone signaling molecules and can be 
targeted by QSIs to inhibit bacterial virulence (166, 

167). In P. aeruginosa, both QS and biofilms are impacted 
by the surrounding environment representing these 
complex communities as a challenge (168). A variety of 
potent chemical compounds can be utilized to inhibit 
the process of QS and thereby reducing the QS-mediated 
biofilm formation in P. aeruginosa. In this quest, various 
reported synthetic compounds have been found which 
act on attenuating the P. aeruginosa virulence by 
targeting various QS mediated systems as represented 
in Table 2.

Table 2. Chemical classes reported as quorum sensing inhibitors that act via different mechanisms against Pseudomonas aeruginosa 
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Concluding remarks
It is well-established that the pathogenic microbial 

strains possess an enhanced ability to adapt and develop 
a mechanism against the chemical compound that could 
impair its sustainability. The overuse of antibiotics 
increases the chances of development of resistant strains. 
This is especially true for the opportunistic pathogen P. 
aeruginosa and its inherent capability to transform into a 
multidrug-resistant phenotype. However, this pathogen 
can rapidly develop resistance to multiple classes of 
antibiotics during patient treatment. The chromosomal 
protein AmpG, the outer membrane porin OprD, and the 
multitude of efflux pumps are particularly responsible 
for this challenging therapeutic regime, and the 
discussion presented in this review highlights complex 
mechanisms and pathways by which P. aeruginosa 

regulates and/or co-regulates their expression. In the 
lack of a diminished antibiotic development pipeline 
towards antimicrobial therapeutics, we must look for 
novel strategies to combat the threat of antibacterial 
resistance. To solve this issue, an alternative strategy 
that involves the development of new active agents that 
are capable of targeting bacterial virulence besides its 
growth has to be devised. In this context, research for 
anti-QS has been largely explored during the last two 
decades to propose new alternatives to struggle against 
bacterial infection with limited selective pressure. 
The present study highlights the importance of QS in 
up-regulation of efflux pump genes for escaping from 
antibiotic attack. However, the scientific community 
has to admit the importance of QS in the development 
of bacterial resistance, and concealed pathways have to 

Continud Table 2. 
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be explored for investigating the role of QSI in order to 
develop anti-QS therapeutics. 
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