Effects of Combination of BMP7, PFG, and Autograft on Healing of the Experimental Critical Radial Bone Defect by Induced Membrane (Masquelet) Technique in Rabbit | ||
The Archives of Bone and Joint Surgery | ||
مقاله 16، دوره 9، شماره 5، آذر و دی 2021، صفحه 585-597 اصل مقاله (1.13 M) | ||
نوع مقاله: RESEARCH PAPER | ||
شناسه دیجیتال (DOI): 10.22038/abjs.2020.50852.2532 | ||
نویسندگان | ||
Effat Karimi Ghahfarrokh1؛ Abdolhamid Meimandi-Parizi* 1؛ Ahmad Oryan2؛ Nasrollah Ahmadi2 | ||
1Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran | ||
2Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran | ||
چکیده | ||
Background: Healing of large segmental bone defects can be challenging for orthopedic surgeons. This research was conducted to provide further insight into the effects of BMP7 in combination with autograft and platelet fibrin glue (PFG) on bone regeneration by Masquelet technique (MT). Methods: Twenty five domestic male rabbits, more than 6 months old, weighing 2.00±0.25 kg were randomly divided into five equal groups as follows: MT-blank cavity (without any biological or synthetic materials) (1), blank cavity (2), MTautograft (3), MT-autograft-BMP7 (4), and MT-BMP7-PFG (5). A 20 mm segmental defect was made in radial bone in both forelimbs. The Masquelet technique was done in all groups except group 2. The study was evaluated by radiology, biomechanics, histopathology and scanning electron microscopy. Results: The results showed that Masquelet technique enhanced the healing process, as, the structural and functional criteria of the injured bone showed significantly improved bone healing (p <0.05). Treatment by PFG-BMP7, Autograft- BMP7, and autograft demonstrated beneficial effects on bone healing. However, Autograft-BMP7 was more effective than autograft in healing of the radial defect in rabbits. Conclusion: Our findings introduce the osteogenic materials in combination with Masquelet technique as an alternative for reconstruction of the big diaphyseal defects in the long bones in animal models. Our findings may be useful for clinical application in future. Level of evidence: V | ||
کلیدواژهها | ||
Autograft؛ BMP7؛ Masquelet technique؛ PFG؛ Rabbit | ||
مراجع | ||
1. Motsitsi N. Masquelet’s technique for management of long bone defects: from experiment to clinical application. East and Central African Journal of Surgery. 2012;17(2):43-7. 2. Hertel R, Gerber A, Schlegel U, Cordey J, Rüegsegger P, Rahn B. 10. Cancellous bone graft for skeletal reconstruction Muscular versus periosteal bed— Preliminary report. Injury. 1994;25(1):SA59-SA70. 3. Viateau V, Bensidhoum M, Guillemin Gv, Petite H, Hannouche D, Anagnostou F, et al. Use of the induced membrane technique for bone tissue engineering purposes: animal studies. The Orthopedic clinics of North America. 2010;41(1):49-56. 4. Tong K, Zhong Z, Peng Y, Lin C, Cao S, Yang Y, et al. Masquelet technique versus Ilizarov bone transport for reconstruction of lower extremity bone defects following posttraumatic osteomyelitis. Injury. 2017; 48(7):1616-22. 5. Masquelet A, Fitoussi F, Begue T, Muller G, editors. Reconstruction of the long bones by the induced membrane and spongy autograft. Annales de chirurgie plastique et esthetique; 2000;45(Suppl 3):346–353. 6. Masquelet AC, Begue T. The concept of induced membrane for reconstruction of long bone defects. Orthopedic Clinics. 2010;41(1):27-37. 7. Gouron R, Deroussen F, Juvet M, Ursu C, Plancq M-C, Collet L-M. Early resection of congenital pseudarthrosis of the tibia and successful reconstruction using the Masquelet technique. The Journal of bone and joint surgery British volume. 2011;93(4):552-4. 8. Pelissier P, Masquelet A, Bareille R, Pelissier SM, Amedee J. Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration. Journal of orthopaedic research. 2004;22(1):73-9. References collagen bundles in the outer part (3, 6, 8). In all its layers, it is richly vascularized, and blood vessels refer to the formation of bone defect (40, 41). Despite the thin structure, it has mechanical strength, and forms a closed biological chamber after removing the cement, which maintains the volume of the bone graft and prevents ingrowth of soft-tissue (3, 6, 40, 42). This study showed that autograft-BMP7 and PFGBMP7 could promote bone healing in the long bone defects in the rabbit model better than using only autograft. Combinations of these materials with Masquelet technique are useful for big segmental defects. This finding introduces the osteogenic materials in combination with Masquelet technique as a favorable alternative for the reconstruction of large diaphyseal defects in long bones in animal models and the findings of our study may be useful for human clinical use in the future, as rabbits have similar Haversian systems to humans. (89). Ethics and consent to participate: All animals received humane care in accordance with the guide for care and use of laboratory animals published by the National Institutes of Health (NIH publication No. 85-23). The study was approved by the local ethics committee of “Regulations for using animals in scientific procedures” in our school of veterinary medicine. We obtained written informed consent to use the animals in our study from the owners of the animals. 9. Giannoudis PV, Faour O, Goff T, Kanakaris N, Dimitriou R. Masquelet technique for the treatment of bone defects: tips-tricks and future directions. Injury. 2011;42(6):591-8. 10. Karger C, Kishi T, Schneider L, Fitoussi F, Masquelet A-C. Treatment of posttraumatic bone defects by the induced membrane technique. Orthopaedics & Traumatology: Surgery & Research. 2012;98(1):97- 102. 11. Aho O-M, Lehenkari P, Ristiniemi J, Lehtonen S, Risteli J, Leskelä H-V. The mechanism of action of induced membranes in bone repair. JBJS. 2013;95(7):597-604. 12. Yin Q, Sun Z, Gu S. Progress of Masquelet technique to repair bone defect. Zhongguo xiu fu chong jian wai ke za zhi= Zhongguo xiufu chongjian waike zazhi= Chinese journal of reparative and reconstructive surgery. 2013;27(10):1273-6. 13. Christou C, Oliver RA, Yu Y, Walsh WR. The Masquelet technique for membrane induction and the healing of ovine critical sized segmental defects. PLoS One. 2014;9(12). 14. Cecchi S, Bennet SJ, Arora M. Bone morphogenetic protein-7: Review of signalling and efficacy in fracture healing. Journal of orthopaedic translation. 2016;4:28-34. 15. Lane JM. Bone morphogenic protein science and studies. Journal of orthopaedic trauma. 2005; 19(10):S17-S22. 16. Epstein NE. Complications due to the use of BMP/ INFUSE in spine surgery: the evidence continues to mount. Surgical neurology international. 2013; 4(Suppl 5):S343-52. 17. Bowler D, Dym H. Bone Morphogenic Protein. J Dental Clinics of North America. 2015;59(2):493-503. 18. Katagiri T, Yamaguchi A, Komaki M, Abe E, Takahashi N, Ikeda T, et al. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. The Journal of cell biology. 1994;127(6):1755-66. 19. Friedlander GE. OP-1 clinical studies. J Bone Joint Surg Am. 2001;83(1):160-1. 20. Derner R, Anderson AC. The bone morphogenic protein. Clinics in podiatric medicine and surgery. 2005;22(4):607-18. 21. Kaur S, Grover V, Kaur H, Malhotra R. Evaluation of bone morphogenic proteins in periodontal practice. Indian journal of dentistry. 2016;7(1):28-37. 22. Reddi AH. Bone morphogenetic proteins: from basic science to clinical applications. JBJS. 2001;83(1_ suppl_1):S1-S6. 23. Cook SD. Preclinical and clinical evaluation of osteogenic protein-1 (BMP-7) in bony sites. Orthopedics. 1999;22(7):669-71. 24. Sciadini MF, Johnson KD. Evaluation of recombinant human bone morphogenetic protein‐2 as a bone‐graft substitute in a canine segmental defect model. Journal of Orthopaedic Research. 2000;18(2):289-302. 25. Pluhar GE, Manley PA, Heiner JP, Vanderby Jr R, Seeherman HJ, Markel MD. The effect of recombinant human bone morphogenetic protein‐2 on femoral reconstruction with an intercalary allograft in a dog model. Journal of orthopaedic research. 2001;19(2):308-17. 26. Badlani N, Oshima Y, Healey R, Coutts R, Amiel D. Use of bone morphogenic protein-7 as a treatment for osteoarthritis. Clinical Orthopaedics and Related Research®. 2009;467(12):3221-9. 27. Spanjol J, Dordevic G, Markic D, Fuckar Cupic D, Krpina K, Bobinac D. Bone Morphogenetic Protein 7 and Pyelonephritis. Collegium antropologicum. 2010;34(2):61-4. 28. Lories RJ, Luyten FP. Bone morphogenetic proteins in destructive and remodeling arthritis. Arthritis research & therapy. 2007;9(2):207.1-7 29. Thorn J, Sørensen H, Weis-Fogh U, Andersen M. Autologous fibrin glue with growth factors in reconstructive maxillofacial surgery. International journal of oral and maxillofacial surgery. 2004; 33(1):95-100. 30. Burnouf T, Su CY, Radosevich M, Goubran H, El‐Ekiaby M. Blood‐derived biomaterials: fibrin sealant, platelet gel and platelet fibrin glue. ISBT Science Series. 2009;4(1):136-42. 31. Burnouf T, Goubran HA, Chen T-M, Ou K-L, El-Ekiaby M, Radosevic M. Blood-derived biomaterials and platelet growth factors in regenerative medicine. Blood reviews. 2013;27(2):77-89. 32. Zhu S-J, Choi B-H, Jung J-H, Lee S-H, Huh J-Y, You T-M, et al. A comparative histologic analysis of tissue-engineered bone using platelet-rich plasma and platelet-enriched fibrin glue. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2006;102(2):175-9. 33. Lee H-J, Choi B-H, Jung J-H, Zhu S-J, Lee S-H, Huh J-Y, et al. Maxillary sinus floor augmentation using autogenous bone grafts and platelet-enriched fibrin glue with simultaneous implant placement. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2007;103(3):329-33. 34. Gholipour H, Meimandi-Parizi A, Oryan A, Sadegh AB. The effects of gelatin, fibrin-platelet glue and their combination on healing of the experimental critical bone defect in a rat model: radiological, histological, scanning ultrastructural and biomechanical evaluation. Cell and tissue banking. 2018;19(3):341-56. 35. Butterfield KJ, Bennett J, Gronowicz G, Adams D. Effect of platelet-rich plasma with autogenous bone graft for maxillary sinus augmentation in a rabbit model. Journal of Oral and Maxillofacial Surgery. 2005;63(3):370-6. 36. Findikcioglu K, Findikcioglu F, Yavuzer R, Elmas C, Atabay K. Effect of platelet-rich plasma and fibrin glue on healing of critical-size calvarial bone defects. Journal of Craniofacial Surgery. 2009;20(1):34-40. 37. Bojrab MJ. Enxertamento osseo. Técnicas atuais em cirurgia de pequenos animais 3a ed Sao Paulo: Roca. 1996:786-93. 38. Fini M, Cadossi R, Canè V, Cavani F, Giavaresi G, Krajewski A, et al. The effect of pulsed electromagnetic fields on the osteointegration of hydroxyapatite implants in cancellous bone: a morphologic and microstructural in vivo study. Journal of orthopaedic research. 2002;20(4):756-63. 39. Mühlhäusser J, Winkler J, Babst R, Beeres FJ. Infected tibia defect fractures treated with the Masquelet technique. Medicine. 2017;96(20):1-17. 40. Viateau V, Guillemin G, Calando Y, Logeart D, Udina K, Sedel L, et al. Induction of a barrier membrane to facilitate reconstruction of massive segmental diaphyseal bone defects: an ovine model. Veterinary Surgery. 2006;35(5):445-52. 41. Klaue K, Knothe U, Anton C, Pfluger DH, Stoddart M, Masquelet AC, et al. Bone regeneration in long-bone defects: tissue compartmentalisation? In vivo study on bone defects in sheep. Injury. 2009;40(4):S95-S102. 42. Viateau V, Guillemin G, Bousson V, Oudina K, Hannouche D, Sedel L, et al. Long‐bone critical‐size defects treated with tissue‐engineered grafts: A study on sheep. Journal of orthopaedic research. 2007;25(6):741-9. 43. Lane JM, Sandhu H. Current approaches to experimental bone grafting. The Orthopedic clinics of North America. 1987;18(2):213-25. 44. Emery SE, Brazinski MS, Koka A, Bensusan JS, Stevenson S. The biological and biomechanical effects of irradiation on anterior spinal bone grafts in a canine model. The Journal of bone and joint surgery American volume. 1994;76(4):540-8. 45. Papakostidis C, Kanakaris NK, Pretel J, Faour O, Morell DJ, Giannoudis PV. Prevalence of complications of open tibial shaft fractures stratified as per the Gustilo– Anderson classification. Injury. 2011;42(12):1408-15. 46. Calori G, Colombo M, Mazza E, Ripamonti C, Mazzola S, Marelli N, et al. Monotherapy vs. polytherapy in the treatment of forearm non-unions and bone defects. Injury. 2013;44(1):S63-S9. 47. Kanakaris NK, Tosounidis TH, Giannoudis PV. Surgical Injury. 2015;46(5):S25-S32. 48. Ilizarov G, Ledyaev V. The replacement of long tubular bone defects by lengthening distraction osteotomy of one of the fragments. Clinical Orthopaedics and Related Research (1976-2007). 1992;280:7-10. 49. DeCoster TA, Gehlert RJ, Mikola EA, Pirela-Cruz MA. Management of posttraumatic segmental bone defects. JAAOS-Journal of the American Academy of Orthopaedic Surgeons. 2004;12(1):28-38. 50. Levin SL. Vascularized fibula graft for the traumatically induced long-bone defect. JAAOS-Journal of the American Academy of Orthopaedic Surgeons. 2006;14(10):S175-S6. 51. McCall TA, Brokaw DS, Jelen BA, Scheid DK, Scharfenberger AV, Maar DC, et al. Treatment of large segmental bone defects with reamer-irrigatoraspirator bone graft: technique and case series. Orthopedic Clinics. 2010;41(1):63-73. 52. Cook SD, Baffes GC, Wolfe MW, Kuber Sampath T, Rueger DC, Whitecloud Iii TS. The effect of recombinant human osteogenic protein-1 on healing of large segmental bone defects. J Bone Joint SurgA Am. 1994;76(6):827-38. 53. Geiger F, Bertram H, Berger I, Lorenz H, Wall O, Eckhardt C, et al. Vascular endothelial growth factor gene‐activated matrix (VEGF165‐GAM) enhances osteogenesis and angiogenesis in large segmental bone defects. Journal of Bone and Mineral Research. 2005;20(11):2028-35. 54. Cooper GM, Mooney MP, Gosain AK, Campbell PG, Losee JE, Huard J. Testing the “critical-size” in calvarial bone defects: revisiting the concept of a critical-sized defect (CSD). Plastic and reconstructive surgery. 2010;125(6):1685. 55. Mills L, Simpson A. In vivo models of bone repair. The Journal of bone and joint surgery British volume. 2012;94(7):865-74. 56. Vajgel A, Mardas N, Farias BC, Petrie A, Cimões R, Donos N. A systematic review on the critical size defect model. Clinical oral implants research. 2014;25(8):879-93. 57. Bigham-Sadegh A, Oryan A. Selection of animal models for pre-clinical strategies in evaluating the fracture healing, bone graft substitutes and bone tissue regeneration and engineering. Connective tissue research. 2015;56(3):175-94. 58. Liu F, Chen K, Hou L, Li K, Wang D, Zhang B, et al. Determining the critical size of a rabbit rib segmental bone defect model. Regenerative biomaterials. 2016;3(5):323-8. 59. Oryan A, Alidadi S, Bigham-Sadegh A, Moshiri A. Effectiveness of tissue engineered based platelet gel embedded chitosan scaffold on experimentally induced critical sized segmental bone defect model in rat. Injury. 2017;48(7):1466-74. 60. Oryan A, Bigham-Sadegh A, Monazzah S. The effect of hPRP and autogrfat-PRP on bone healing in the radial defect of rat. Journal of Musculoskeletal Research. 2016;19(01):1650003. 61. Moshiri A, Shahrezaee M, Shekarchi B, Oryan A, Azma K. Three-dimensional porous gelapin–simvastatin scaffolds promoted bone defect healing in rabbits. Calcified tissue international. 2015;96(6):552-64. 62. Shafiei-Sarvestani Z, Oryan A, Bigham AS, Meimandi- Parizi A. The effect of hydroxyapatite-hPRP, and coral-hPRP on bone healing in rabbits: radiological, biomechanical, macroscopic and histopathologic evaluation. International Journal of Surgery. 2012;10(2):96-101. 63. Oryan A, Bigham-Sadegh A, Monazzah S. Fish bone versus fish demineralized bone matrix (vertebra) effects on healing of experimental radial defect in rat model. Comparative Clinical Pathology. 2016;25(5):981-5. 64. Alidadi S, Oryan A, Bigham-Sadegh A, Moshiri A. Role of platelet gel embedded within gelatin scaffold on healing of experimentally induced critical-sized radial bone defects in rats. International orthopaedics. 2017;41(4):805-12. 65. Parizi AM, Oryan A, Shafiei-Sarvestani Z, Bigham A. Human platelet rich plasma plus Persian Gulf coral effects on experimental bone healing in rabbit model: radiological, histological, macroscopical and biomechanical evaluation. Journal of Materials Science: Materials in Medicine. 2012;23(2):473-83. 66. Oryan A, Parizi AM, Shafiei-Sarvestani Z, Bigham A. Effects of combined hydroxyapatite and human platelet rich plasma on bone healing in rabbit model: radiological, macroscopical, hidtopathological and biomechanical evaluation. Cell and tissue banking. 2012;13(4):639-51. 67. Oryan A, Bigham-Sadegh A, Abbasi-Teshnizi F. Effects of osteogenic medium on healing of the experimental critical bone defect in a rabbit model. Bone. 2014;63:53-60. 68. Oryan A, Alidadi S, Bigham-Sadegh A, Meimandi- Parizi A. Chitosan/gelatin/platelet gel enriched by a combination of hydroxyapatite and betatricalcium phosphate in healing of a radial bone defect model in rat. International journal of biological macromolecules. 2017;101:630-7. 69. Alidadi S, Oryan A, Bigham-Sadegh A, Moshiri A. Comparative study on the healing potential of chitosan, polymethylmethacrylate, and demineralized bone matrix in radial bone defects of rat. Carbohydrate polymers. 2017;166:236-48. 70. Pélissier P, Lefevre Y, Delmond S, Villars F, Vilamitjana- Amedee J. Influences of induced membranes on heterotopic bone formation within an osteo-inductive complex. Experimental study in rabbits. Annales de chirurgie plastique et esthetique; 2008, 54(1):16-20. 71. Zwetyenga N, Catros S, Emparanza A, Deminiere C, Siberchicot F, Fricain J-C. Mandibular reconstruction using induced membranes with autologous cancellous bone graft and HA-βTCP: animal model study and preliminary results in patients. International journal of oral and maxillofacial surgery. 2009;38(12):1289-97. 72. Cook SD, Wolfe MW, Salkeld SL, Rueger DC. Effect of recombinant human osteogenic protein-1 on healing of segmental defects in non-human primates. J Bone Joint Surg Am. 1995;77(5):734-50. 73. Salkeld SL, Patron LP, Barrack RL, Cook SD. The effect of osteogenic protein-1 on the healing of segmental bone defects treated with autograft or allograft bone. JBJS. 2001;83(6):803-16. 74. Chen X, Kidder LS, Lew WD. Osteogenic protein‐1 induced bone formation in an infected segmental defect in the rat femur. Journal of orthopaedic research. 2002;20(1):142-50. 75. Djapic T, Kusec V, Jelic M, Vukicevic S, Pecina M. Compressed homologous cancellous bone and bone morphogenetic protein (BMP)-7 or bone marrow accelerate healing of long-bone critical defects. International orthopaedics. 2003;27(6):326-30. 76. Oryan A, Alidadi S, Moshiri A, Bigham‐Sadegh A. Bone morphogenetic proteins: A powerful osteoinductive compound with non‐negligible side effects and limitations. Biofactors. 2014;40(5):459-81. 77. Moshiri A, Oryan A. Structural and functional modulation of early healing of full-thickness superficial digital flexor tendon rupture in rabbits by repeated subcutaneous administration of exogenous human recombinant basic fibroblast growth factor. The Journal of foot and ankle surgery. 2011;50(6):654-62. 78. Oryan A, Moshiri A. Recombinant fibroblast growth protein enhances healing ability of experimentally induced tendon injury in vivo. Journal of tissue engineering and regenerative medicine. 2014;8(6):421-31. 79. Giannoudis PV, Tzioupis C. Clinical applications of BMP- 7: the UK perspective. Injury. 2005;36(3):S47-S50. 80. Ito K, Yamada Y, Naiki T, Ueda M. Simultaneous implant placement and bone regeneration around dental implants using tissue‐engineered bone with fibrin glue, mesenchymal stem cells and platelet‐rich plasma. Clinical oral implants research. 2006;17(5):579-86. 81. You T-M, Choi B-H, Zhu S-J, Jung J-H, Lee S-H, Huh J-Y, et al. Platelet-enriched fibrin glue and plateletrich plasma in the repair of bone defects adjacent to titanium dental implants. International Journal of Oral & Maxillofacial Implants. 2007;22(3):417-422. 82. Trouillas M, Prat M, Doucet C, Ernou I, Laplace- Builhé C, Saint Blancard P, et al. A new platelet cryoprecipitate glue promoting bone formation after ectopic mesenchymal stromal cell-loaded biomaterial implantation in nude mice. Stem cell research & therapy. 2013;4(1):1. 83. Sánchez AR, Sheridan PJ, Kupp LI. Is platelet-rich plasma the perfect enhancement factor? A current review. International Journal of Oral & Maxillofacial Implants. 2003;18(1). 84. Ranly DM, Lohmann CH, Andreacchio D, Boyan BD, Schwartz Z. Platelet-rich plasma inhibits demineralized bone matrix-induced bone formation in nude mice. JBJS. 2007;89(1):139-47. 85. Giovanini AF, Deliberador TM, Gonzaga CC, de Oliveira Filho MA, Göhringer I, Kuczera J, et al. Platelet-rich plasma diminishes calvarial bone repair associated with alterations in collagen matrix composition and elevated CD34+ cell prevalence. Bone. 2010; 46(6):1597-603. 86. Marsell R, Einhorn TA. The biology of fracture healing. Injury. 2011;42(6):551-5. 87. Oryan A, Moshiri A. A long term study on the role of exogenous human recombinant basic fibroblast growth factor on the superficial digital flexor tendon healing in rabbits. J Musculoskelet Neuronal Interact. 2011;11(2):185-95. 88. Moshiri A, Oryan A. Role of platelet rich plasma in soft and hard connective tissue healing: an evidence based review from basic to clinical application. Hard Tissue. 2013;2(1):6. 89. Oryan A, Alidadi S, Moshiri A. Current concerns regarding healing of bone defects. Hard tissue. 2013;2(2):1-12. | ||
آمار تعداد مشاهده مقاله: 657 تعداد دریافت فایل اصل مقاله: 505 |