Antiglycation and antitumoral activity of Tribulus terrestris dry extract | ||
Avicenna Journal of Phytomedicine | ||
مقاله 3، دوره 11، شماره 3، مرداد و شهریور 2021، صفحه 224-237 اصل مقاله (664.95 K) | ||
نوع مقاله: Original Research Article | ||
شناسه دیجیتال (DOI): 10.22038/ajp.2020.16957 | ||
نویسندگان | ||
Célia Cristina Malaguti Malaguti Figueiredo1؛ Amanda Costa Gomes1؛ Filipe Oliveira Granero1؛ João Luiz Bronzel Junior1؛ Luciana Pereira Silva2؛ Ana Lúcia Tasca Gois Ruiz3؛ Regildo Márcio Gonçalves da Silva* 4 | ||
1São Paulo State University (UNESP), Institute of Chemistry, Araraquara, São Paulo, Brazil | ||
2Fundação Educacional do Município de Assis (FEMA), Assis, São Paulo, Brazil | ||
3University of Campinas (UNICAMP), Faculty of Pharmaceutical Sciences, Campinas, São Paulo, Brazil | ||
4São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Department of Biotechnology, Laboratory of Herbal Medicine and Natural Products, Assis, São Paulo, Brazil | ||
چکیده | ||
Objective: Investigation of the antiglycation and antitumoral potential of standardized and saponins-enriched extracts of Tribulus terrestris herbal medicine. Materials and Methods: The procedures for the evaluation of the antiglycation activity of the standardized (TtSE) and saponins-enriched (TtEE) extracts of T. terrestris were: determination of relative mobility in electrophoresis (RME), free amino groups using OPA method and advanced glycation end-products (AGEs) fluorescence. Antioxidant activity was determined by DPPH radical scavenging test. In vitro antitumor activity of TtSE and TtEE was evaluated in human tumor cell lines. Results: The results were obtained by antiglycation tests (RME, OPA method and AGEs fluorescence determination), using BSA as protein and ribose as glycation agent, and antioxidant assay (DPPH test); it was verified that both extracts of T. terrestris have antiglycation and antioxidant activity. In addition, the extracts were able to induce death of more than 50% of human tumor cell lines. Conclusion: The present study showed that standardized and saponins-enriched extracts of T. terrestris herbal medicine present antiglycation and antioxidant and antiproliferative action in human tumor cells lines. The saponins-enriched extract proved a greater antiglycation and antioxidant activity in comparison to the standardized type. | ||
کلیدواژهها | ||
Tribulus terrestris؛ Antiproliferative؛ Protein glycation؛ Steroidal saponins | ||
مراجع | ||
Abraham J, Staffurth J. 2020. Hormonal therapy for cancer. Medicine, 48: 103-107. Akbal O, Vural T, Malekghasemi S, Bozdoğan B, Denkbaş EB. 2018. Saponin loaded montmorillonite-human serum albumin nanocomposites as drug delivery system in colorectal cancer therapy. Appl Clay Sci, 166: 214-222. Angelova S, Gospodinova Z, Krasteva M, Antov G, Lozanov V, Markov T, Bozhanov S, Georgieva E, Mitev V. 2013. Antitumor activity of Bulgarian herb Tribulus terrestris L. on human breast cancer cells. J BioSci Biotech, 2: 25-32. Anis MA, Sreerama YN. 2020. Inhibition of protein glycoxidation and advanced glycation end-product formation by barnyard millet (Echinochloa frumentacea) phenolics. Food Chem, 315:126-265. Bansode SB, Gacche RN. 2019. Glycationinduced modification of tissue-specific ECM proteins: A pathophysiological mechanism in degenerative diseases. Biochim Biophys Acta, 1863: 129411. Borran M, Minaiyan M, Zolfaghari B, Mahzouni P. 2017. Protective effect of Tribulus terrestris fruit extract on ceruleininduced acute pancreatitis in mice. Avicenna J Phytomed, 7: 250-260. Chhatre S, Nesari T, Somani G, Kanchan D, Figueiredo et al. AJP, Vol. 11, No. 3, May-Jun 2021 234 Sathaye S. 2014. Phytopharmacological overview of Tribulus terrestris. Pharmacogn Rev, 8: 45-51. Chhipa AS, Borse SP, Baksi R, Lalotra S, Nivsarkar M. 2019. Targeting receptors of advanced glycation end-products (RAGE): Preventing diabetes induced cancer and diabetic complications. Pathol Res Pract, 215: 152643. Combarieu E, Fuzzati N, Lovati M, Mercalli E. 2003. Furostanol saponins from Tribulus terrestris. Fitoterapia, 74(6): 583-591. Dil FA, Ranjkesh Z, Goodarzi MT. 2019. A systematic review of antiglycation medicinal plants. Diabetes Metab Syndr, 13: 1225-1229. Dinchev D, Janda B, Evstatieva L, Oleszek W, Aslani MR, Kostova I. 2008. Distribution of steroidal saponins in Tribulus terrestris from different geographical regions. Phytochemistry, 69: 176-186. Divya MK, Dharmapal S, Achuthan CR, Babu TD. 2014. Cytotoxic and antitumor effects of Tribulus terrestris L fruit methanolic extract. J Pharmacogn Phytochem, 3: 1-4. Doost AS, Camp JV, Dewettinck K, Van der Meeren P. 2019. Production of thymol nanoemulsions stabilized using Quillaja Saponin as a biosurfactant: Antioxidant activity enhancement. Food Chem, 292: 134-143. Elekofehinti OO. 2015. Saponins: Anti-diabetic principles from medicinal plants - A review. Pathophysiology, 22: 95-103. El-Shaibany A, Al-Habori M, Al-Tahami B, Al-Massarani S. 2015. Anti-hyperglycaemic Activity of Tribulus terrestris L aerial part extract in glucose-loaded normal rabbits. Trop J Pharm Res, 14: 2263-2268. Escribano J, Cabanes J, Jiménez-Atiénzar M, Ibañez-Tremolada M, Gómez-Pando LR, García-Carmona F, Gandía-Herrero F. 2017. Characterization of betalains, saponins and antioxidant power in differently colored quinoa (Chenopodium quinoa) varieties. Food Chem, 234: 285-294. Ezeabara CA, Okeke CU, Aziagba BO, Ilodibia CV, Emeka AN. 2014. Determination of saponin content of various parts of six Citrus species. Int Res J Pure Appl Chem, 4: 137- 143. Ezeonu CS, Ejikeme CM. 2016. Qualitative and quantitative determination of phytochemical contents of indigenous nigerian softwoods. New J Sci, 5601327: 1-9. Fayle SE, Healy JP, Brown PA, Reid EA, Gerrard JA, Ames JM. 2001. Novel approaches to the analysis of the Maillard reaction of proteins. Electrophoresis, 22: 1518-1525. Gilabert-Oriol R, Weng A, von Mallinckrodt B, Stöshel A, Nissi L, Melzig MF, Fuchs H, Thakur M. 2015. Electrophoretic mobility as a tool to separate immune adjuvant saponins from Quillaja saponaria Molina. Int J Pharm, 487: 39-48. Gugliucci A, Bastos DHM, Schulze J, Souza MFF. 2009. Caffeic and chlorogenic acids in Ilex paraguariensis extracts are the main inhibitors of AGE generation by methylglyoxal in model proteins. Fitoterapia, 80: 339–344. Hammoda HM, Ghazy NM, Harraz FM, Radwan MM, ElSohly MA, Abdallah II. 2013. Chemical constituents from Tribulus terrestris and screening of their antioxidant activity. Phytochemistry, 92: 153–159. Ivanova A, Lazarova I, Mechkarova P, Tchorbanov B. 2010. HPLC Method for Screening of Steroidal Saponins and Rutin as Biologically Active Compounds in Tribulus terrestris L. Biotechnol Biotechnol Equip, 24: 129-133. Jud P, Sourij H. 2019. Therapeutic options to reduce advanced glycation end products in patients with diabetes mellitus: A review. Diabetes Res Clin Pract, 148: 54-63. Khan M, Liu H, Wang J, Sun B. 2020. Inhibitory effect of phenolic compounds and plant extracts on the formation of advance glycation end products: A comprehensive review. Food Res Int, 130: 108933. Kim HJ, Kim JC, Min JS, Kim M-J, Kim JA, Kor MH, Yoo HS, Ahn JK. 2011. Aqueous extract of Tribulus terrestris Linn induces cell growth arrest and apoptosis by downregulating NF-қB signaling in liver cancer cells. J Ethnopharmacol, 136: 197-203. Koomson DA, Kwakye BD, Darkwah WK, Odum B, Asante M, Aidoo G. 2018. Phytochemical Constituents, Total Saponins, Alkaloids, Flavonoids and Vitamin C Contents of Ethanol Extracts of five Solanum torvum Fruits. Pharmacogn J, 10: 946-950. Kouidrat Y, Amad A, Arai M, Miyashita M, Lalau J-D, Loas G, Itokawa M. 2015. Advanced glycation end products and schizophrenia: A systematic review. J Psychiatr Res, 66-67: 112-117. Antiglycation and antitumoral activity of T. terrestris AJP, Vol. 11, No. 3, May-Jun 2021 235 Krishna RN, Anitha R, Ezhilarasan D. 2020. Aqueous extract of Tamarindus indica fruit pulp exhibits antihyperglycaemic activity. Avicenna J Phytomed, 10: 440-447. Lamba HS, Bhargava CS, Thakur M, Bhargava S. 2011. α-Gluosidase and aldose reductase inhibitory activity in vitro and anti-diabetic activity in vivo of Tribulus terrestris L. (DUNAL). Int J Pharm Pharm Sci, 3: 270- 272. Li M, Guan Y, Liu J, Zhai F, Zhang X, Guan L. 2013. Cellular and molecular mechanisms in vascular smooth muscle cells by which total saponin extracted from Tribulus terrestris protects against artherosclerosis. Cell Physiol Biochem, 32: 1299-1308. Majidinia M, Bishayee A, Yousefi B. 2019. Polyphenols: Major regulators of key components of DNA damage response in cancer. DNA Repair (Amst), 82: 102679. Mishra NK, Biswal GS, Chowdary KA, Mishra G. 2013. Anti-arthritic activity of Tribulus terrestris studied in Freund’s Adjuvant induced arthritic rats. J Pharm Educ Res, 4: 41-46. Miura S, Watanabe J, Tomita T, Sano M, Tomita I. 1994. The inhibitory of tea polyphenols (flavan-3-ol derivatives) on Cu2+ mediated oxidative modification of low density lipoprotein. Biol Pharm Bull, 17: 1567-1572. Mohd J, Akhtar AJ, Abuzer A, Javed A, Ali M, Ennus T. 2012. Pharmacological scientific evidence for the promise of Tribulus terrestris. Int Res J Pharm, 3: 403-406. Monks A, Scudeiro D, Skehan P, Shoemaker R, Paull K, Vistica D, Hose C, Langley J, Cronise P, Vaigro-Wolff A, Gray-Goodrich M, Campbell H, Mayo J, Boyd M. 1991. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J Natl Cancer Inst, 83: 757-766. Mulinacci M, Vignolini P, La Marca G, Pieraccini G, Innocenti M, Vincieri FF. 2003. Food supplements of Tribulus terrestris L.: An HPLC-ESI-MS method for an estimation of the saponin content. Chromatographia, 57: 581-592. Nadjib RM, Amine G, Amine HM. 2018. Glycated hemoglobin assay in a Tlemcen population: Retrospective study. Diabetes Metab Syndr, 12: 911-916. Naz R, Ayub H, Nawaz S, Islam ZU, Yasmin T, Bano A, Wakeel A, Zia S, Roberts TH. 2017. Antimicrobial activity, toxicity and anti-inflammatory potential of methanolic extracts of four ethnomedicinal plant species from Punjab, Pakistan. BMC Complement Altern Med, 17: 302. Neha K, Haider MR, Pathak A, Yar MS. 2019. Medicinal prospects of antioxidants: A review. Eur J Med Chem, 178: 687-704. NunesJHB, Bergamini FRG, Lustri WR, Paiva PP, Ruiz ALTG, Carvalho JE, Corbi PP. 2017. Synthesis, characterization and in vitro biological assays of a silver (I) complex with 5-fluorouracil: A strategy to overcome multidrug resistant tumor cells. J Fluor Chem, 195: 93-101. Oh JS, Baik SH, Ahn E-K, Jeong W, Hong SS. 2012. Antiinflammatory activity of Tribulus terrestris in RAW264.7 Cells. J Immunol, 188: 54-62. Pavin NF, Izaguirry AP, Soares MB, Spiazzi CC, Mendes ASL, Leivas FG, Brum DS, Cibin FWS. 2018. Tribulus terrestris Protects against Male Reproductive Damage Induced by Cyclophosphamide in Mice. Oxid Med Cell Longev, 2018: 1-9. Pokrywka A, Morawin B, Krzywański J, Zembroń-Lacny A. 2017. An Overview on Tribulus terrestris in Sports Nutrition and Energy Regulation. In: Bagchi D (Ed), Sustained Energy for Enhanced Human Functions and Activity, pp. 155-165, Cambridge, USA, Academic Press. Pourali M, Yaghoobi MM, Sormaghi MHS. 2017. Cytotoxic, Anti-Proliferative and Apoptotic Effects of Tribulus terrestris L. Fruit Extract on Human Prostate Cancer Lncap and Colon Cancer HT-29 Cell Lines. Jundishapur J Nat Pharm Prod, 12: e33561. Prasad C, Davis KE, Imrhan V, Juma S, Vijayagopal P. 2019. Advanced Glycation End Products and Risks for Chronic Diseases: Intervening Through Lifestyle Modification. Am J Lifestyle Med, 1: 384- 404. Qureshi A, Naughton DP, Petroczi A. 2014. A Systematic Review on the Herbal Extract Tribulus terrestris and the Roots of its Putative Aphrodisiac and Performance Enhancing Effect. J Diet Suppl, 11: 64-79. Rabbani G, Ahn SN. 2019. Structure, enzymatic activities, glycation and therapeutic potential of human serum albumin: A natural cargo. Int J Biol Macromol, 123: 979-990. Ren Y, Chen Y, Hu B, Wu H, Lai F, Li X. 2015. Figueiredo et al. AJP, Vol. 11, No. 3, May-Jun 2021 236 Microwave-assisted extraction and a new determination method for total steroid saponins from Dioscorea zingiberensis C.H. Wright. Steroids, 104: 145-152. Rufino MSM, Alves RE, Brito ES, PérezJiménez J, Saura-Calixto F, Mancini-Filho J. 2010. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem, 121: 996-1002. Sadowska-Bartosz I, Bartosz G. 2016. Effect of glycation inhibitors on aging and age-related diseases. Mech Ageing Dev, 160: 1-18. Sajadimaj S, Bahramsoltani R, Iranpanah A, Patra JK, Das G, Gouda S, Rahimi R, Rezaeiamiri E, Cao H, Giampieri F, Battino M, Tundis R, Campos MG, Farzaei MH, Xiao J. 2020. Advances on Natural Polyphenols as Anticancer Agents for Skin Cancer. Pharmacol Res, 151: 104584. Sanagoo S, Oskouei BS, Abdollahi NG, SalehiPourmehr H, Hazhir N, Farshbaf-Khalili A. 2019. Effect of Tribulus terrestris L. on sperm parameters in men with idiopathic infertility: A systematic review. Complement Ther Med, 42: 95-103. Santos CHC, Talpo TC, Motta BP, Kaga AK, Baviera AM, Castro RN, Silva VC, SousaJunior PT, Wessjohann L, Carvalho MG. 2019. New compounds of Siolmatra brasiliensis and inhibition of in vitro protein glycation damage. Fitoterapia, 133: 109- 119. Shamah-Levy T, Villalpando-Hernández S, Rivera-Dommarco J. 2006. Manual de procedimientos para proyectos de nutrición, pp. 1-148, Cuernavaca, México, Instituto Nacional de Salud Pública. Siddiqui MA, Rasheed S, Saquib Q, AlKhedhairy AA, Al-Said MS, Musarrat J, Choudhary MI. 2016. In Vitro dual inhibition of protein glycation, and oxidation by some Arabian plants. BMC Complement Altern Med, 16: 276-2085. Singh D, Chaudhuri PK. 2018. Structural characteristics, bioavailability and cardioprotective potential of saponins. Integr Med Res, 7: 33-43. Sisto M, Lisi S. 2019. Saponins from Tribulus terrestris Linn Plant - Potentials and Challenges for Prevention of Solar Ultraviolet Radiation-Induced Damages and Malignant Transformation. Biomed J Sci & Tech Res, 16: 12345-12352. Siva B, Venkanna A, Poornima B, Reddy SD, Boustie J, Bastien S, Jain N, Rani PU, Babu KS. 2017. New seco-limonoids from Cipadessa baccifera: Isolation, structure determination, synthesis and their antiproliferative activities. Fitoterapia, 117: 34-40. Sivapalan SR. 2016. Biological and pharmacological studies of Tribulus terrestris Linn: A review. Int J Multidiscip Res Dev, 3: 257-265. Sobolewska D, Galanty A, Grabowska K, Makowska-Was J, Wróbel-Biedrawa D, Podolak Irma. 2020. Saponins as cytotoxic agents: an update (2010–2018). Part Isteroidal saponins. Phytochem Rev, 19: 139- 189. Soleimanpour S, Sedighinia FS, Afshar AS, Zarif R, Ghazvini K. 2015. Antibacterial activity of Tribulus terrestris and its synergistic effect with Capsella bursapastoris and Glycyrrhiza glabra against oral pathogens: an in-vitro study. Avicenna J Phytomed, 5: 210-217. Sousa EO, Miranda CMBA, Nobre CB, Boligon AA, Athayde ML, Costa JGM. 2015. Phytochemical analysis and antioxidant activities of Lantana camara and Lantana montevidensis extracts. Ind Crop Prod, 70: 7-15. Su L, Chen G, Feng S-G, Wang W, Li Z-F, Chen H, Liu Y-X, Pei Y-H. 2009. Steroiral saponins from Tribulus terrestris. Steroids, 74: 399-403. Tian C, Chang Y, Zhang Z, Wang H, Xiao S, Cui C, Liu M. 2019. Extraction technology, component analysis, antioxidant, antibacterial,analgesic and antiinflammatory activities of flavonoids fraction from Tribulus terrestris L. leaves. Heliyon, 5: 22-34. Wang Q, Wu X, Shi F, Liu Y. 2019. Comparison of antidiabetic effects of saponins and polysaccharides from Momordica charantia L. in STZ-induced type 2 diabetic mice. Biomed Pharmacother, 109: 744-750. Wei Y, Chen L, Chen J, Ge L, He RQ. 2009. Rapid glycation with D-ribose induces globular amyloid-like aggregations of BSA with high cytotoxicity to SH-SY5Y cells. BMC Cell Biol, 10: 10. Younus H, Anwar S. 2016. Prevention of nonenzymatic glycosylation (glycation): Implication in the treatment of diabetic complication. Int J Health Sci (Qassim), 10: Antiglycation and antitumoral activity of T. terrestris AJP, Vol. 11, No. 3, May-Jun 2021 237 261-277. Zendjabil M. 2020. Glycated albumin. Clin Chim Acta, 502: 240-244. Zeng C, Li Y, Ma J, Niu L, Tay FR. 2019. Clinical/Translational Aspects of Advanced Glycation End-Products. Trends Endocrinol Metab, 30: 959-973. Zhao Y-Z, Zhang Y-Y, Han H, Fan R-P, Hu Y, Zhong L, Kou J-P, Yu B-Y. 2018. Advances in the antitumor activities and mechanisms of action of steroidal saponins. Chin J Nat Medicines, 16: 732-748. | ||
آمار تعداد مشاهده مقاله: 9,123 تعداد دریافت فایل اصل مقاله: 1,136 |