LC-MS based identification of stylosin and tschimgine from fungal endophytes associated with Ferula ovina | ||
Iranian Journal of Basic Medical Sciences | ||
مقاله 8، دوره 23، شماره 12، اسفند 2020، صفحه 1565-1570 اصل مقاله (1 M) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22038/ijbms.2020.46334.10703 | ||
نویسندگان | ||
Zahra Tazik1؛ Kamran Rahnama1؛ James Francis White2؛ Hassan Soltanloo3؛ Maede Hasanpour4؛ Mehrdad Iranshahi* 4 | ||
1Department of Plant Protection, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran | ||
2Department of Biology, Rutgers University, New Brunswick, New Jersey, U.S.A. | ||
3Department of Biotechnology & Plant Breeding, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran | ||
4Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran | ||
چکیده | ||
Objective(s): Ferula ovina is an Iranian medicinal plant. Tschimgine and stylosin are two of its major monoterpene derivatives. In this study, we proceeded to investigate some fungal endophytes from F. ovina that can produce plant secondary metabolites. Materials and Methods: The isolated endophytic fungi were fermented in potato dextrose broth (PDB) medium and their extracts were screened for the presence of the plant compounds by liquid chromatography-tandem mass spectrometry (LC-MS). Endophytes identification was performed by morphological and molecular methods. Three markers (ITS, LSU, and TEF1) were used for accurate molecular identification. Results: Forty isolates from 9 different genera of endophytic fungi were identified, of which two recently reported species of O. ferulica and Pithoascus persicus were able to produce tschimgine and stylosin. Conclusion: These fungi can be used as a substitute for the production of plant’s medicinal compounds independent of wild populations of the source plant. | ||
کلیدواژهها | ||
Ferula ovina؛ Fungal endophytes؛ Ochroconis ferulica؛ Pithoascus persicus؛ Stylosin؛ Tschimgine | ||
مراجع | ||
1. De Bary A. Morphologie und Physiologie der Pilze, Flechten, und Myxomyceten. Hofmeister’s Handbook of Physiological Botany. 1st ed. Leipzig; 1866 2. Wilson D. Endophyte: The evolution of a term, and clarification of its use and definition. Oikos 1995; 73:274-276. 3. Krings M, Taylor TN, Hass H, Kerp H, Dotzler N, Hermsen EJ. Fungal endophytes in a 400-million-yr-old land plant: infection pathways, spatial distribution and host responses. New Phythol 2007; 174:648-657. 4. Venugopalan A, Srivastava S. Endophytes as in vitro production platforms of high value plant secondary metabolites. Biotechnol Adv 2015; 33:873-887. 5. Kusari S, Hertweck C, Spiteller M. Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 2012; 19:792-798. 6. Lee JC, Strobel GA, Lobkovsky E, Clardy J. Torreyanic acid: a selectively cytotoxic quinone dimer from the endophytic fungus Pestalotiopsis microspora. J Org Chem 1996; 61:3232-3233. 7. Strobel G, Stierle A, Stierle D, Hess WM. Taxomyces and reanae, a proposed new taxon for a bulbilliferous hyphomycete associated with Pacific yew (Taxus brevifolia). Mycotaxon 1993; 47:71-80. 8. Lee JC, Lobkovsky E, Pliam NB, Stroble GA, Clardy J. Subglutinol A and B: immunosuppressive compounds from the endophytic fungus Fusarium cubglutinans. J org chem 1995; 60:7076-7077. 9. Strobel G, Hess W. Glucosylation of the peptide leucinostatinA, produced by an endophytic fungus of European yew, may protect the host from leucinostatin toxicity. Chem & Biol 1997; 4:529-536. 10. Priti V, Ramesha BT, Singh S, Ravikanth G, Ganeshaiah KN, Suryanarayanan TS, et al. How promising are endophytic fungi as alternative sources of plant secondary metabolites? Curr Sci 2009; 97:477-478. 11. Mozaffarian V. A Dictionary of Iranian Plant Names. 1st ed. Farhang-e Moaser; 1996 12. Iranshahi M, Arfa P, Ramezani M, Jaafari MR, Sadeghian H, Bassarello C, et al. Sesquiterpene coumarins from Ferula szowitsiana and in vitro anti-leishmanial activity of 7-prenyloxycoumarins against promastigotes. Phytochem 2007; 68:554-561. 13. Iranshahi M, Ghiadi M, Sahebkar A, Rahimi A, Bassarello C, Piacente S, et al. Badrakemonin, a new eremophilane-type sesquiterpene from the roots of Ferula badrakema Kos.-Pol. Iran J Pharm Res 2009; 8:275-279. 14. Karimi G, Iranshahi M, Hosseinalizadeh F, Riahi B, Sahebkar A. Screening of acetylcholinesterase inhibitory activity of terpenoid and coumarin derivatives from the genus Ferula. Pharmacologyonline 2010; 1:566-574. 15. Valiahdi SM, Iranshahi M, Sahebkar A. Cytotoxic activities of phytochemicals from Ferula species. Daru 2013; 21:39-46. 16. Kojo H, Eguchi Y, Makino K, Terada H. Versatile pharmacological activities of phytochemicals through their effects on nuclear receptors. J Pharmacogn Phytochem 2018; 7:251-264. 17. Behnam Rassouli F, Matin MM, Iranshahi M, Bahrami A. Investigating the cytotoxic and apoptosis inducing effects of monoterpenoid stylosin in vitro. Fitoterapia 2011; 82:742-749. 18. Azhir F, Shahmoradi AA. Autecology of Ferula ovina Boiss. in Tehran Province. Iran J Range and Desert Res 2007; 14:359-367. 19. Hallmann J, Berg G, Schulz B. Isolation procedures for endophytic microorganisms. In: Schulz B, Boyle C, Sieber T, editrs. Microbial Root Endophytes: Soil Biology, vol 9. New York: Springer Brelin Heidelberg; 2007.p. 299-319. 20. Zhang Q, Wei X, Wang J. Phillyrin producedby Colletotrichum gloeosporioides, an endophytic fungus isolated from Forsythia suspensa. Fitoterapia 2012; 83:1500-1505. 21. Pluskal T, Castillo S, VillarBriones A, Orešič M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometrybased molecular profile data, BMC Bioinformatics 2010; 11:395. 22. Vainio EJ, Korhonen K, Hantula J. Genetic variation in Phlebiopsis gigantean as detected with random amplified microsatellite (RAMS) markers. Mycol res 1998; 2:187-192. 23. Ellis MB. Dematiaceous Hyphomycetes. 1st ed. Commonwealth Mycological Institute; 1971 24. Afanou KA, Straumfors A, Skogstad A, Nilsen T, Synnes O, Skaar I, et al. Submicronic fungal bioaerosols: High-resolution microscopic characterization and quantification. Appl Environ Microbiol 2014; 80:7122-7130. 25. White TJ, Bruns TD, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. 1st ed. San Diego: Academic Press; 1990.p. 315-322. 26. Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 1990; 172:4238-4246. 27. Rehner SA, Buckley E. A Beauveria phylogeny inferred from nuclear ITS and EF1-alpha sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 2005; 97:84-98. 28. Tazik Z, Rahnama K, Iranshahi M, White JF, Soltanloo H. Ochroconis ferulica sp. nov. (Venturiales), a fungal endophyte from Ferula ovina. Nova Hedwigia 2020; 110:369-381. 29. Tazik Z, Rahnama K, Iranshahi M, White JF, Soltanloo H. A new species of Pithoascus and first report of this genus as endophyte associated with Ferula ovina. Mycoscience 2020; 61:145-150. 30. Cui Y, Yi D, Bai X, Sun B, Zhao Y, Zhang Y. Ginkgolide B produced endophytic fungus (Fusarium oxysporum) isolated from Ginkgo biloba. Fitoterapia 2012; 83:913-920. 31. Ahmed A. Sesquiterpene coumarins and sesquiterpenes from Ferula sinaica. Phytochem 1999; 50:109-112. 32. Ahmed A, Abd El-Razek M, Nassar M, Izuma S, Ohta S, Hirata T. Sesquiterpene coumarins from the roots of Ferula assafoetida. Phytochem 2001; 58:1289-1295. 33. Iranshahi M, Amin G, Shafiee A. A new coumarin from Ferula persica. Pharm Biol 2004; 42:440-442. 34. Iranshahi M, Kalategi F, Rezaee R, Shahverdi A, Ito C, Furukawa H, et al. Cancer chemopreventive activity of terpenoid coumarins from Ferula species. Planta Med 2008; 74:147-150. 35. Valle G, Appendino G, Nano G, Picci V. Prenylated coumarins and sesquiterpenoids from Ferula communis. Phytochem 1987; 26:253-258. 36. Sun L, Zhu J, Li X, Shi S, Guo S. Diversity of endophytic fungi associated with Ferula sinkiangensis K. M. Shen. Acta Microbiologica Sinica 2014; 54:936-942. 37. Perveen I, Asam Raza M, Iqbal T, Naz I, Sehar S, Ahmed S. Isolation of anti-cancer and anti-microbial metabolites from Epicoccum nigrum; endophyte of Ferula sumbul. Microb Pathog 2017; 110:214-224. 38. Pimenov M, Leonov M. The genera of the Umbelliferae: 1st ed. Royal Botanic Gardens; 1993. | ||
آمار تعداد مشاهده مقاله: 741 تعداد دریافت فایل اصل مقاله: 566 |