Anti-inflammatory, antioxidant and antinociceptive activities of Russelia coccinea (L.) Wettst. | ||
Avicenna Journal of Phytomedicine | ||
دوره 11، شماره 2، خرداد و تیر 2021، صفحه 101-108 اصل مقاله (674.87 K) | ||
نوع مقاله: Short communication | ||
شناسه دیجیتال (DOI): 10.22038/ajp.2020.16718 | ||
نویسندگان | ||
María C. Columba-Palomares1؛ Rosa Mariana Montiel-Ruiz2؛ Lucia Corona Sánchez1؛ Daniel Palafox-Gante1؛ Verónica Rodríguez-López* 1 | ||
1Laboratory of Chemistry of Natural Products and Pharmacognosy, Faculty of Pharmacy, Autonomous University of the State of Morelos (UAEM). Morelos, México. | ||
2Laboratory of Pharmacology, Center of Biomedical Research of the South, Mexican Institute of Social Security (IMSS). Morelos, México. | ||
چکیده | ||
Objective: Some species of the Russelia genus have been used different illnesses associated with pain and inflammation. The aim of this work was to characterize the biological activities (anti-inflammatory and analgesic) and antioxidant capacity of methanol and dichloromethane extracts of Russelia coccinea. Materials and Methods: In this study, topical anti-inflammatory activity was tested in an in vivo model of 12-O-tetradecanoylphorbol acetate (TPA) induced mouse ear edema of organic extracts (doses: 0.03, 0.1, and 0.3 mg/ear). The antinociceptive activity was assessed using the formalin test in mice of organic extracts (doses: 56, 100 and 300 mg/kg ). Moreover, the antioxidant capacity of the extracts was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azinobis(3-ethylbenzothiaziline-6-sulfonate) (ABTS) and ferric reducing antioxidant power (FRAP) assays. Results: Methanol (RcM) and dichloromethane (RcD) extracts of the R. coccinea aerial parts were found to inhibit ear edema (48.95 and 40.13%, respectively) at a dose of 0.3 mg/ear. Acute treatment with RcM produced a significant antinociceptive effect in the late phase of formalin-induced nociception. Moreover, RcM at doses of 56, 100 and 300 mg/kg showed a significant antinociceptive effect through the early and late phases in the formalin test. RcM and RcD showed weak antioxidant capacities in the ABTS and DPPH assays; however, when their reducing capacity was evaluated by the FRAP assay, RcM showed a reducing activity similar to Camellia sinensis standard at the proven concentration of 1000 μg/ml. Conclusion: According to the experimental findings, the organic extracts of R. coccinea display remarkable antinociceptive and anti-inflammatory activities. | ||
کلیدواژهها | ||
Russelia coccinea؛ Plantaginaceae؛ Anti-inflammatory activity؛ Antinociceptive activity؛ Organic extracts؛ Antioxidant | ||
مراجع | ||
Afzal S, Aslam M, Janbaz K, Ahmad M, Ghori M, Khurm M, Chaudhry B, Uzair M, Nawaz S, Bibi M, Qaiser M. 2017. Preliminary Phytochemical and Biological activities on Russelia juncea Zucc. Dialogo J, 4: 159– 174. Ahmed E, Desoukey S, Fouad M, Kamel M. 2016. A pharmacognostical study of Russelia equisetiformis Sch. & Cham. Int J Pharmacogn Phytochem Res, 8: 174–192. Ali S, Mohamed A, Mohammed G. 2014. Fatty acid composition, anti-inflammatory and analgesic activities of Hibiscus sabdariffa Linn. seeds. J Adv Vet Anim Res, 1: 50–57. Arulselvan P, Fard M, Tan W, Gothai S, Fakurazi S, Norhaizan M, Kumar S. 2016. Role of Antioxidants and Natural Products in Inflammation. Oxid Med Cell Longev, 2016: 1–15. Awe E, Adeloye A, Idowu T, Olajide O, Makinde J. 2008. Antinociceptive effect of Russelia equisetiformis leave extracts: Identification of its active constituents. Phytomedicine, 15: 301–305. Awe E, Makinde J, Olajide O, Wakeel O. 2004. Evaluation of the anti-inflammatory and analgesic properties of the extract of Russelia equisetiformis (Schlecht & Cham) Scrophulariacae. Inflammopharmacology, 12: 399–405. Bralley E, Greenspan P, Hargrove J, Wicker L, Hartle D. 2008. Topical anti-inflammatory activity of Polygonum cuspidatum extract in the TPA model of mouse ear inflammation. J Inflamm, 5: 1–7. Burns D, Reynolds W, Buchanan G, Reese P, Enriquez R. 2000. Assignment of 1H and 13C spectra and investigation of hindered side‐ chain rotation in lupeol derivatives. Magn Reson Chem, 38: 488–493. Columba-Palomares MC, Villarreal ML, Marquina S, Romero-Estrada A, Zamilpa Alvarez, A, Alvarez L. 2018. Antiproliferative and anti-inflammatory acyl glucosyl flavones from the leaves of Bursera copallifera. J Mex Chem Soc, 62: 78–88. Dubuisson D, Dennis S. 1977. The formalin test: A quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain, 4: 161–174. Firuzi O, Lacanna A, Petrucci R, Marrosu G, Saso L. 2005. Evaluation of the antioxidant activity of flavonoids by “ferric reducing antioxidant power” assay and cyclic voltammetry. Biochim Biophys Acta - Gen Subj, 1721: 174–184. Hunskaar S, Hole K. 1987. The formalin test in mice : dissociation between. Pain, 30: 103– 114. Johnson C, Lin L, Harnly J, Oladeinde F, Kinyua A, Michelin R, Bronner Y. 2011. Identification of the Phenolic Components of Vernonia amygdalina and Russelia equisetiformis. J Nat Prod, 4: 57–64. Khalilzadeh E, Vafaei Saiah G, Hasannejad H, Ghaderi A, Ghaderi S, Hamidian G, Mahmoudi R, Eshgi D, Zangisheh M. 2015. Antinociceptive effects, acute toxicity and chemical composition of Vitex agnus-castus essential oil. Avicenna J Phytomed, 5: 218– 30. Kolawole OT, Kolawole SO. 2010. Effects of Russelia equisetiformis methanol and aqueous extracts on hepatic function indices. Biol Med, 2: 38–41. MacDonald-Wicks LK, Wood LG, Garg ML. 2006. Methodology for the determination of biological antioxidant capacity in vitro: A review. J Sci Food Agric, 86: 2046–2056. Medeiros R, Otuki MF, Avellar MCW, Calixto JB. 2007. Mechanisms underlying the inhibitory actions of the pentacyclic triterpene α-amyrin in the mouse skin inflammation induced by phorbol ester 12- O-tetradecanoylphorbol-13-acetate. Eur J Pharmacol, 559: 227–235. Missouri Botanical Garden. 2019. Tropicos|Name-Russelia coccinea (L.) Wettst. Monroy-Ortiz, C., Castillo- España, P., 2007. Plantas medicinales utilizadas en el estado de Morelos, 2a edición. ed. Cuernavaca, Mor. Moreno-Quirós C, Sánchez-Medina A, Vázquez-Hernández M, Hernández Reyes A, García-Rodríguez R. 2017. Antioxidant, anti-inflammatory and antinociceptive potential of Ternstroemia sylvatica Schltdl. & Cham. Asian Pac J Trop Med, 10: 1047– 1053. Olorunju A, Adewale A, Modupe M. 2012. Columba-Palomares et al. AJP, Vol. 11, No. 2, Mar-Apr 2021 108 Anti-inflammatory activity of Russelia equisetiformis Schlecht and Cham: identification of its active constituent. J Intercult Ethnopharmacol, 1: 25. Ortiz MI, Castañeda-Hernández G. 2008. Examination of the interaction between peripheral lumiracoxib and opioids on the 1% formalin test in rats. Eur J Pain, 12: 233– 241. Patil K, Mahajan U, Unger B, Goyal S, Belemkar S, Surana S, Ojha S, Patil CR. 2019. Animal models of inflammation for screening of anti-inflammatory drugs: Implications for the discovery and development of phytopharmaceuticals. Int J Mol Sci, 20: 1-38. Rahman A, 2001. Studies in natural products chemistry. Volume 54: bioactive natural products, pp. 1-1036, Elsevier S. ed. Oxford UK. Romero-Estrada A, Maldonado-Magaña A, González-Christen J, Bahena S, GarduñoRamírez, ML, Rodríguez-López V, Alvarez L. 2016. Anti-inflammatory and antioxidative effects of six pentacyclic triterpenes isolated from the Mexican copal resin of Bursera copallifera. BMC Complement Alternat Med, 16: 422. Shibata M, Ohkubo T, Takahashi H, Inoki R. 1989. Modified formalin test: characteristic biphasic pain response. Pain, 38: 347–352. Tjølsen A, Berge OG, Hunskaar S, Rosland JH, Hole K. 1992. The formalin test: an evaluation of the method. Pain, 51: 5–17. Winyard PG, Willoughby DA. 2003. Inflammation Protocols. pp. 1-377. Humana Press, New Jersey. Young JM, Wagner BM, Spires DA. 1983. Tachyphylaxis in 12-0- tetradecanoylphorbol acetate- and arachidonic acid-induced ear edemaInvest . Dermatol, 80: 48-82. | ||
آمار تعداد مشاهده مقاله: 10,665 تعداد دریافت فایل اصل مقاله: 2,374 |