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Infections: Quantifying Parameters of Social 

Distancing in the U.S.

Abstract

Background: To evaluate the association between social distancing quantified by mobile phone data and the current 
prevalence of COVID-19 infections in the U.S. per capita.
  
Methods: Data were accessed on April 4, 2020, from Centers for Disease Control and Prevention, Google COVID-19 
Community Mobility Report, and the United States Census Bureau to report prevalence of COVID-19 infections, mobility 
data, and population per state, respectively. Mobility data points were defined as daily length of visit or time spent in a 
single location based on mobile phone users shared locations from February 7 – March 29, 2020. Multivariable linear 
regression was used to evaluate relationships between normalized per capita infection prevalence and six parameters 
of social distancing.

Results: Mobility data indicated the following percent changes compared to median values of baseline activity: -50% in 
transit stations, -45% in retail/recreation, -36% in workplaces, -23% in grocery/pharmacy, -19% in parks, and +12% in 
residential living areas. Multivariable linear regression revealed significant correlation between prevalence of infection 
per capita and parameters of social distancing (R= 0.604, P= 0.002). Time at home was not an independent predictor 
for prevalence of infection per capita (beta= 0.016; 95% CI, -0.003 to 0.036; P= 0.09). 

Conclusion: Based on mobility reports from mobile phone GPS data and six characteristics of social distancing, 
significant associations were identified between geographic activity and prevalence of COVID-19 infections in the 
U.S. per capita. Mobile phone data utilizing ‘location history’ may be warranted to monitor the effectiveness of social 
distancing parameters on reducing prevalence of COVID-19 in the U.S.

Level of evidence: IV
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Introduction

Since the novel coronavirus (COVID-19) was declared 
a global pandemic on March 11, 2020, public health 
officials have been feverishly working to monitor 

and reduce the exposure of persons to this virus (1-
3). As communities strive to impart ways to control 
infectious outbreaks, the virus continues to cause 
significant economic, social, and political disruption. 
Social distancing has been identified as one of the main 

interventions to prevent the spread of global disease (4-
7). As infection rates continue to rise in the United States 
(U.S.) for COVID-19, it is important to evaluate the real-
time effects of social distancing as they relate to disease 
infection prevalence (8, 9).

Previous reports indicate that during the SARS (severe 
acute respiratory syndrome virus) epidemic in 2003, 
public health measures were critical in controlling the 
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Outcomes Measures
For mobility data, six parameters of social distancing 

were defined and used in the analysis: 1) retail and 
recreation, 2) grocery and pharmacy, 3) parks, 4) transit 
stations, 5) workplaces, and 6) residential areas. Mobility 
data points were defined as daily length of visit or time 
spent in a single location based on Google users shared 
locations from February 7 – March 29, 2020 (experiment 
period). Parameters of mobility were expressed as a 
percent change in the median value in comparison to 
the baseline activity. Baseline activity was defined as 
the median value for the corresponding day of the week 
during a 5-week period of January 3 – February 6, 2020.

Statistical Analysis
Descriptive statistics were gathered and reported for 

COVID-19 infection prevalence and populace per state 
in the U.S. Infection rates were normalized for each state 
according to total current living population and expressed 
as a percentage. For social distancing parameters, the 
median values of mobility data were used to determine 
a percent change from baseline and expressed as either 
positive activity (increase time spent) or negative activity 
(decrease time spent). Multivariable linear regression 
modelling was used to evaluate associations between 
normalized per capita infection prevalence and geographic 
mobility. For the multivariable regression model, the 
previously mentioned six parameters of social distancing 
were entered with an alpha level set at P < 0.05 for 
statistical significance. Due to the fixed sample size (n=51) 
and unknown aggregate data from public sources, a power 
analysis was not calculated and additional confounders 
(e.g. age, sex, comorbidities) were unable to be entered 
to adjust the model. Residual diagnostics were performed 
to assess whether model assumptions were satisfactorily 
met. Unless otherwise noted, data were reported as 
median (first and third quartiles). Data were analyzed 
using SPSS statistical software version 22.0 (IBM Corp).

Results
Infection Prevalence 

As of April 4, 2020, the total number of COVID-19 
infections in the U.S. was 238836, which corresponds to 
0.07% of the total U.S. population. The median number 
of infections per state was 1358 [479, 3824] (0.03% per 
capita). The highest numbers of COVID-19 infections 
were 90279, 25590, and 10791 for New York, New Jersey, 
and Michigan, respectively. Per capita, New York (0.46%), 
New Jersey (0.29%), and Louisiana (0.20%) had the 
highest infection prevalence. The lowest number of 
COVID-19 infections were 147, 150, and 159 for Alaska, 
Wyoming, and North Dakota, respectively. Per capita, 
West Virginia (0.01%), Nebraska (0.01%), and Minnesota 
(0.01%) had the lowest infection prevalence [Table 1]. 

Social Distancing 
During the experiment period from February 7 to March 

29, 2020, mobility data across 51 states indicated the 
following percent changes compared to baseline activity: 
-50% [-60, -34] activity in transit stations, -45% [-53, -39] 
activity in retail/recreation, -36% [-39, -33] activity in 

infectious outbreak (10). There are different methods 
of controlling infections by means of reducing human-
to-human contact, which include isolation, quarantine, 
and community containment. Isolation is the separation 
of infected persons from non-infected persons, whereas 
quarantine is movement restriction of persons when 
it is not evident whether they have been infected but 
are not yet symptomatic or have not been infected 
(11). Community containment includes measures that 
range from increasing social distancing to community-
wide quarantine. An important concept in evaluating 
successful interventions is the ability to analyze in 
real-time how infection rates change with containment 
strategies (9, 12, 13). 

Recent research demonstrates the potential effectiveness 
of quarantine in controlling COVID-19 as seen in Wuhan, 
China; however it remains unclear if the current measures 
of community containment such as social distancing will 
be sufficient to control the spread of COVID-19 in the U.S 
(14, 15). Utilizing mobile phone data as a means of public 
monitoring has been recommended (9, 16). Yet, there is 
limited data to support validation of using mobile phone 
data to quantify social distancing parameters and its 
association on COVID-19 infection prevalence. Therefore, 
the purpose of this study was to evaluate the association 
between social distancing quantified by mobile phone 
data and the current prevalence of COVID-19 infections 
in the U.S. per capita.

Materials and Methods
Study Design & Data Extraction

This observational study was conducted utilizing 
publicly available records. Due to study design and lack 
of access to personally identifiable datasets, evaluation 
from an institutional review board committee was not 
warranted. Public data sources were screened to gather 
three key data points regarding U.S. populations: 1) 
current prevalence of COVID-19 infections per state, 
2) current mobility data per state, and 3) current 
total living population per state. Data were accessed 
on April 4, 2020, from the Centers for Disease Control 
and Prevention (as of April 3, 2020), Google (Google 
LLC, Mountain View, CA, USA) Analytics COVID-19 
Community Mobility Report (as of March 29, 2020; 
Supplement 1), and the United States Census Bureau (as 
of December 2019; Supplement 2), to report prevalence 
of COVID-19 infections, mobility data, and population 
per state, respectively (17).

According to Google LLC, all geographical data input 
from mobile phone users is aggregated and anonymized 
including publicly accessible records such as Google’s 
COVID-19 Community Mobility Report. Mobility data 
was determined from users who have actively turned on 
their ‘Location History’ setting in correspondence with 
their mobile phones global positioning system (GPS) 
(i.e. Google Maps, Google LLC, Mountain View, CA, USA). 
These Community Mobility Reports chart movements 
over time by geography and across different categories 
of places which aim to provide insight to how visits and 
length of stay at different places change compared to a 
previous time period.  
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Table 1. Prevalence of COVID-19 infections in U.S. and percent change in six domains of social distancinga,b.

State  Number of
†Infections ††State Population  Infections Per

*Capita
 Retail &

Recreation Transit  Grocery &
Pharmacy Workplace Parks Residential

AL 1270 4903185 0.03 -41 -30 -13 -32 19 9

AK 147 731545 0.02 -48 -55 -27 -33 18 10

AZ 1598 7278717 0.02 -40 -41 -17 -33 -7 10

AR 679 3017804 0.02 -29 -22 -7 -27 81 7

CA 9191 39512223 0.02 -50 -54 -24 -39 -38 15

CO 3728 5758736 0.06 -51 -60 -27 -40 -12 13

CT 3824 3565287 0.11 -56 -64 -32 -38 -52 15

DE 393 973764 0.04 -47 -57 -28 -37 -6 12

DC 653 705749 0.09 -64 -68 -30 -47 -41 14

FL 8694 21477737 0.04 -50 -63 -26 -41 -48 13

GA 5486 10617423 0.05 -42 -52 -17 -37 -2 11

HI 225 1415872 0.02 -56 -72 -36 -45 -65 16

ID 891 1787065 0.05 -42 -34 -18 -38 25 10

IL 7695 12671821 0.06 -53 -55 -24 -39 -29 13

IN 3039 6732219 0.05 -48 -34 -25 -36 24 11

IA 614 3155070 0.02 -43 -28 -10 -29 41 10

KS 552 2913314 0.02 -36 -20 -14 -30 72 9

KT 770 4467673 0.02 -37 -34 -11 -34 68 9

LA 9150 4648794 0.20 -45 -49 -16 -35 -18 11

ME 376 1344212 0.03 -50 -56 -22 -31 -24 10

MD 2331 6045680 0.04 -45 -51 -25 -39 29 13

MA 8966 6892503 0.13 -59 -73 -36 -42 -56 16

MI 10791 9986857 0.11 -58 -55 -28 -43 15 12

MN 789 5639632 0.01 -58 -64 -35 -38 -16 14

MS 1358 2976149 0.05 -32 -29 -7 -30 27 9

MO 1834 6137428 0.03 -38 -34 -12 -32 73 9

MT 244 1068778 0.02 -51 -37 -25 -37 28 10

NE 255 1934408 0.01 -34 -18 -9 -24 109 8

NV 1458 3080156 0.05 -47 -62 -23 -52 -38 14

NH 479 1359711 0.04 -58 -63 -35 -38 -63 13

NJ 25590 8882190 0.29 -59 -70 -33 -44 -36 16

NM 403 2096829 0.02 -44 -31 -18 -34 -12 11

NY 90279 19453561 0.46 -62 -68 -32 -46 -47 16

NC 2093 10488084 0.02 -40 -51 -15 -35 13 10

ND 159 762062 0.02 -44 -36 -13 -24 73 9

OH 2902 11689100 0.02 -43 -33 -19 -35 117 10

OK 879 3956971 0.02 -36 -23 -12 -32 29 9

OR 826 4217737 0.02 -51 -47 -25 -38 -22 12

PA 7016 12801989 0.05 -50 -52 -27 -38 7 12

RI 681 1059361 0.06 -55 -67 -30 -37 -50 14
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workplaces, -23% [-28, -13] activity in grocery/pharmacy, 
-19% [-29, 9] activity in parks, and +12% [9, 13] activity 
in residential living areas. Multivariable linear regression 
revealed significant correlation between prevalence of 
infection per capita and parameters of social distancing 
(R2= 0.365, R= 0.604, P= 0.002); specifically, as geographic 
mobility increased, infection prevalence increased 
[Figure 1]. Independent predictors of lower prevalence 

of infection per capita were decreased retail/recreation 
activity (beta= -0.007; 95% CI, -0.013 to -0.001; P= 0.02) 
and decreased grocery/pharmacy activity (beta= 0.008; 
95% CI, 0.002 to 0.014; P= 0.01). Despite the overall 
increase in residential activity compared to baseline 
(range, 7-16%), time at home was not an independent 
predictor for prevalence of infection per capita (beta= 
0.016; 95% CI, -0.003 to 0.036; P= 0.09) [Table 2]. 

Table 1. Continued

SC 1554 5148714 0.03 -38 -34 -11 -34 -4 9

SD 165 884659 0.02 -35 -31 -3 -25 126 8

TN 2845 6829174 0.04 -35 -35 -9 -34 35 8

TX 4669 28995881 0.02 -45 -47 -23 -36 -27 13

UT 1165 3205958 0.04 -41 -44 -14 -40 26 10

VT 338 623989 0.05 -62 -71 -42 -43 -55 13

VA 2012 8535519 0.02 -39 -50 -16 -36 46 11

WA 5683 7614893 0.07 -48 -56 -26 -41 -11 13

WV 217 1792147 0.01 -38 -31 -16 -33 52 8

WI 1730 5822434 0.03 -55 -50 -30 -34 -12 13

WY 150 578759 0.03 -37 -14 -13 -29 29 8

†As reported by Centers for Disease Control and Prevention on April 3, 2020.
††As reported by United States Census Bureau on December 31, 2019.
*Value: (number of infections / total living population) = percentage of infections per capita
aParameters of mobility are expressed as percent change in comparison to baseline activity. Baseline activity is defined as the median value for the 
corresponding day of the week during 5-week period of January 3 – February 6, 2020.
bValues: negative values indicate percent decrease in time spent in location compared to baseline; positive values indicate percent increase in time 
spent in location compared to baseline. 

Figure 1. A) Normal P-P plot of standardized residuals demonstrating normal distribution of data. B) Scatterplot of multivariable linear 
regression between social distancing parameters and prevalence of COVID-19 infections per capita in the U.S. Lines above and below center 
line represents 95% confidence intervals. There was a significant positive correlation between mobility activity and prevalence of COVID-19 
infections (R= 0.604, P= 0.002).
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Discussion
The most important finding of this study was the 

validation of using mobile phone GPS data to evaluate 
social distancing efforts which were associated with 
COVID-19 infection prevalence in the U.S. per capita. 
Based on this current study, mobility habits including 
time spent at home and in public areas have changed 
dramatically in the past two months due to the COVID-19 
pandemic, corresponding with local quarantine and 
governmental mandates of social distancing. However, 
regression analysis failed to demonstrate association 
between increased residential time (during February 7 to 
March 29, 2020) and decreased prevalence of COVID-19 
infections per capita. This mobility data can provide 
insight to potential social distancing effectiveness and 
it can be recommended to share mobile phone data for 
monitoring and tracking of infection prevalence in the U.S.

In the current study, there was a significant positive 
correlation between geographic activity and COVID-19 
infection prevalence, providing justification for 
social distancing for virus containment. The positive 
association is best related to the ongoing and current 
infection prevalence of CVOID-19 in the U.S. As infection 
rates continue to rise, it appears community’s movement 
patterns and geographic exposure may directly influence 
prevalence. However, because of the study methodology 
and data collection procedures, this study is unable 
to evaluate the effectiveness in reducing COVID-19 
prevalence by means of social distancing. Recently, Hou 
et al. evaluated containment strategies for COVID-19 
in Wuhan City, China, and demonstrated effectiveness 
of quarantine and isolation in reducing the potential 
peak number of COVID-19 infections (14). Similarly, 
others have reported the tremendous potential of 
social distancing in controlling disease transmission 
for influenza and the current novel coronavirus (4, 5, 8, 
18-20). Therefore, continued intervention strategies of 
social distancing in the U.S. are warranted in an effort to 
prevent the spread of COVID-19 (11, 21, 22). 

According to mobility reports using GPS ‘Location 
History’ of mobile phone users (Google LLC) in the 
U.S., the largest overall changes in mobility areas since 
February 7, 2020 were seen in transit stations, with a 

Table 2. Multivariable linear regression model for social distancing parameters and prevalence of COVID-19 infections per capita

Betaa 95% CI SE t Value P Value*

(Intercept) -0.390 -0.628 to -0.152 0.118 -3.30 0.002

Retail & Recreation -0.007 -0.013 to -0.001 0.003 -2.36 0.023

Transit 0.000 -0.003 to 0.003 0.001 0.12 0.900

Grocery & Pharmacy 0.008 0.002 to 0.014 0.003 2.56 0.014

Workplace -0.003 -0.008 to 0.003 0.003 -0.91 0.364

Parks 0.000 -0.001 to 0.001 0.000 0.49 0.625

Residential 0.016 -0.003 to 0.036 0.010 1.68 0.099

*Statistical significance considered P<0.05.
aBeta values are the expected change in infection prevalence given a 1-unit decrease in that covariate, holding all other variables constant.

decrease of 50% activity reported compared to baseline 
activity. However, decreased activity reported in retail/
recreational areas and grocery/pharmacy areas were 
found to independently predict COVID-19 infection 
prevalence per capita. Despite the increased time 
seen in residential locations, identifying with current 
mass social distancing, there was no association with 
decreased infection prevalence. However, this parameter 
of social distancing had the lowest range (7-16%) and 
smallest overall percent change (+12%) compared to 
baseline values and in comparison to the other five 
parameters of social distancing. This finding may help 
guide public health officials on future recommendations 
of implementing wider forms of community containment 
for controlling COVID-19 in the U.S (2, 23, 24).

In the current multivariable regression model, a 
significant linear relationship was identified— indicating 
lower infection prevalence with lower activity in 
community areas and higher prevalence with higher 
activity in community areas. Using mobile phone data 
from GPS tracking systems is an imperfect science, yet 
this can serve as an accessible form of global monitoring 
of human movement patterns in real-time by potentially 
less invasive means in comparison to mass monitoring 
strategies. Thus, maintaining user privacy is a major 
concern. Reports by Google LLC indicate that all data is 
aggregated and anonymized and based on user consent 
of agreeing to monitor ‘Location History’, therefore 
ensuring privacy protection and complying with ethical 
policies. Strict large-scale data monitoring as seen in 
China has illustrated success in mitigating and reducing 
virus transmission (9, 14, 15, 24). However, this type of 
mass surveillance may be contraindicated in the U.S. as 
it violates freedom policies and privacy laws. Therefore, 
further planning of mobile phone data collection and 
analysis is needed in order to ensure user privacy and 
that ethical standards are not compromised (4, 25, 26).

The present study is a small-scale attempt to validate 
the use of mobile phone data to quantify current social 
distancing parameters and their association with 
prevalence of COVID-19. However, further information 
is needed to apply large-scale statistical modelling in 
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