- Wills K, Petrie G, Millett G, Limebeer C, Rock E, Niphakis M, et al. Double Dissociation of
Monoacylglycerol Lipase Inhibition and CB1 Antagonism in the Central Amygdala, Basolateral Amygdala and the Interoceptive Insular Cortex on the Affective Properties of Acute Naloxone-Precipitated Morphine Withdrawal in Rats. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology. 2015. 2. Liu L-W, Lu J, Wang X-H, Fu S-K, Li Q, Lin F-Q. Neuronal apoptosis in morphine addiction and its molecular mechanism. International journal of clinical and experimental medicine. 2013;6(7):540. 3. Bhatt K, Kumar A. Mechanism of morphine addiction by inhibiting the soluble Guanylate Cyclase–Nitric Oxide (sGC–NO) pathway. Mathematical biosciences. 2015;266:85-92. 4. Sanchez-Covarrubias L, Slosky LM, Thompson BJ, Zhang Y, Laracuente M-L, DeMarco KM, et al. Pglycoprotein modulates morphine uptake into the CNS: a role for the non-steroidal anti-inflammatory drug diclofenac. 2014. 5. Wang X, Cochran TA, Hutchinson MR, Yin H, Watkins LR. Drug Addiction.Microglia in Health and Disease: Springer; 2014. p. 299-317. 6. Albeishy M, Maskell P, Seetohul LN, Pounder DJ. Postmortem Redistribution of Morphine and Morphine-3- Glucuronide in Rabbit Models. 2015. 7. Jones AW, Holmgren A, Ahlner J. Concentrations of free-morphine in peripheral blood after recent use of heroin in overdose deaths and in apprehended drivers. Forensic science international. 2012; 215(1):18-24. 8. Jones AW, Holmgren A, Ahlner J. Heroin poisoning deaths with 6-acetylmorphine in blood: demographics of the victims, previous drug-related offences, polydrug use, and free morphine concentrations in femoral blood. Forensic toxicology. 2012; 30(1):19-24. 9. Deventer K, Pozo O, Delbeke F, Van Eenoo P. Direct quantification of morphine glucuronides and free morphine in urine by liquid chromatography–tandem mass spectrometry. Forensic Toxicology. 2012; 30(2):106-13. 10. Ferslew BC, Johnston CK, Tsakalozou E, Bridges AS, Paine MF, Jia W, et al. Altered morphine glucuronide and bile acid disposition in patients with nonalcoholic steatohepatitis. Clinical Pharmacology & Therapeutics. 2015; 97(4):419-27. 11. Konstantinova SV, Normann PT, Arnestad M, Karinen R, Christophersen AS, Mørland J. Morphine to codeine concentration ratio in blood and urine as a marker of illicit heroin use in forensic autopsy samples. Forensic science international. 2012; 217(1):216-21. 12. Parsons TR. A Manual of Chemical & Biological Methods for Seawater Analysis: Elsevier; 2013. 13. Hanson C. Recent advances in liquid-liquid extraction: Elsevier; 2013. 14. Howard A, Morris L, Mangold H, Stahl E. Thin-layer chromatography: a laboratory handbook: Springer Science & Business Media; 2013. 15. Sarton E, Olofsen E, Romberg R, den Hartigh J, Kest B, Nieuwenhuijs D, et al. Sex differences in morphine analgesia: an experimental study in healthy volunteers. Anesthesiology. 2000;93(5):1245-54; discussion 6A. 16. Krekels EH, DeJongh J, van Lingen RA, van der Marel CD, Choonara I, Lynn AM, et al. Predictive performance of a recently developed population pharmacokinetic model for morphine and its metabolites in new datasets of (preterm) neonates, infants and children. Clinical pharmacokinetics. 2011;50(1):51-63. 17. Drummer OH. Postmortem toxicology of drugs of abuse. Forensic science international. 2004;142(2):101-13. 18. Kuwayama K, Tsujikawa K, Miyaguchi H, Kanamori T, Iwata YT, Inoue H. Rapid, simple, and highly sensitive analysis of drugs in biological samples using thin-layer chromatography coupled with matrix-assisted laser desorption/ionization mass spectrometry. Analytical and bioanalytical chemistry. 2012;402(3):1257-67. 19. Jain R. Utility of thin layer chromatography for detection of opioids and benzodiazepines in a clinical setting. Addictive behaviors. 2000;25(3):451-4.
- 20. Murphy CM, Huestis MA. LC–ESI‐ MS/MS analysis for the quantification of morphine, codeine,
morphine‐ 3‐ β‐ D‐ glucuronide, morphine‐ 6‐ β‐ D‐ glucuronide, and codeine‐ 6‐ β‐ D‐ glucuronide in human urine. Journal of mass spectrometry. 2005;40(11):1412-6. 21. Zelcer N, van de Wetering K, Hillebrand M, Sarton E, Kuil A, Wielinga PR, et al. Mice lacking multidrug resistance protein 3 show altered morphine pharmacokinetics and morphine-6-glucuronide antinociception. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(20):7274-9. 22. Ferslew BC, Xie G, Johnston CK, Su M, Stewart PW, Jia W, et al. Altered bile acid metabolome in patients with nonalcoholic steatohepatitis. Digestive diseases and sciences. 2015;60(11):3318-28. 23. Vanbinst R, Koenig J, Di Fazio V, Hassoun A. Bile analysis of drugs in postmortem cases. Forensic science international. 2002;128(1):35-40. 24. Alnouti YM, Shelby MK, Chen C, Klaassen CD. Influence of phenobarbital on morphine metabolism and disposition: LC-MS/MS determination of morphine (M) and morphine-3-glucuronide (M3G) in Wistar-Kyoto rat serum, bile, and urine. Current drug metabolism. 2007;8(1):79-89. 25. Drummer OH, Gerostamoulos J. Postmortem drug analysis: analytical and toxicological aspects. Therapeutic drug monitoring. 2002;24(2):199-209. 26. Skopp G. Preanalytic aspects in postmortem toxicology. Forensic science international. 2004;142(2):75-100. 27. Ho RH, Tirona RG, Leake BF, Glaeser H, Lee W, Lemke CJ, et al. Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology. 2006;130(6):1793- 806.
|