Left ventricular phosphorylation patterns of Akt and ERK1/2 after triiodothyronine intracoronary perfusion in isolated hearts and short-term in vivo treatment in Wistar rats | ||
Iranian Journal of Basic Medical Sciences | ||
مقاله 17، دوره 23، شماره 8، آبان 2020، صفحه 1091-1099 اصل مقاله (1.23 M) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22038/ijbms.2020.44776.10451 | ||
نویسندگان | ||
Jose Morales1؛ Ruth Lopez1؛ Jorge Lopez2؛ Jair Lozano2؛ Rosa Jarillo1؛ Hector Flores3؛ Enrique Castillo* 1 | ||
1Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México | ||
2Departamento de Biología Celular, Instituto Nacional de Perinatología, Ciudad de México, México | ||
3Departamento de Inmuno-Bioquímica, Instituto Nacional de Perinatología, Ciudad de México, México | ||
چکیده | ||
Objective(s): To determine the effects of triiodothyronine (T3) intracoronary perfusion in isolated hearts and short-term administration in rats on the left ventricular (LV) phosphorylation patterns of Akt and ERK1/2. Materials and Methods: Cardiodynamic and hemodynamic parameters were evaluated in Langendorff–perfused hearts. Left ventricles were used for histomorphometric and Western blot analyses. Short-term hyperthyroidism was established by T3 (500 μg.kg-1.d-1; subcutaneous injection) for 1 (T31d), 3 (T33d), and 10 (T310d) days. Results: Isolated hearts receiving T3 perfusion did not modify LV developed pressure, +dP/dtmax, -dP/dtmin, heart rate, and coronary perfusion pressure compared with vehicle-perfused hearts. P-ERK1/2 and p-Akt levels in LV tissues after 5, 15, or 60 min of T3 or vehicle perfusion were similar. Compared with their time-matched controls, isolated hearts of T33d and T310d rats exhibited LV hypertrophy and increased absolute values of +dP/dtmax and -dP/dtmin (i.e., positive inotropic and lusitropic effects). P-ERK1/2 decreased in LV tissues of T31d and T310d but not in those of T33d rats, and p-Akt levels augmented in left ventricles of T33d and stayed unaltered in those of T31d and T310d rats. Conclusion: T3 intracoronary perfusion did not alter cardiodynamics and hemodynamics nor influence the activation of Akt and ERK of normal hearts. Accordingly, the rapid non-genomic effects of T3 were not evident. Short-term T3 treatment provoked cardiac hypertrophy coincidental with increased LV function and associated with transient Akt activation and cyclic ERK1/2 inhibition; which implies activation of physiological hypertrophy signaling and deactivation of pathological hypertrophy signaling, respectively. | ||
کلیدواژهها | ||
Akt ERK1؛ 2 Heart hypertrophy Rat Triiodothyronine treatment | ||
مراجع | ||
1. Fazio S, Palmieri EA, Lombardi G, Biondi B. Effects of thyroid hormone on the cardiovascular system. Recent Prog Horm Res 2004; 59: 31-50. 2. Kahaly GJ, Dillmann WH. Thyroid hormone action in the heart. Endocr Rev 2005; 26: 704-728. 3. Ojamaa K. Signaling mechanisms in thyroid hormone-induced cardiac hypertrophy. Vascul Pharmacol 2010; 52: 113-119. 4. Luidens MK, Mousa SA, Davis FB, Lin HY, Davis PJ. Thyroid hormone and angiogenesis. Vascul Pharmacol 2010; 52: 142-145. 5. Davis PJ, Leonard JL, Davis FB. Mechanisms of nongenomic actions of thyroid hormone. Front Neuroendocrinol 2008; 29: 211-218. 6. Cheng SY, Leonard JL, Davis PJ. Molecular aspects of thyroid hormone actions. Endocr Rev 2010; 31: 139-170. 7. Vella KR, Hollenberg AN. The actions of thyroid hormone signaling in the nucleus. Mol Cell Endocrinol 2017; 458:127-135. 8. Dillmann W. Cardiac hypertrophy and thyroid hormone signaling. Heart Fail Rev 2010; 15: 125-132. 9. Pingitore A, Nicolini G, Kusmic C, Iervasi G, Grigolini P, Forini F. Cardioprotection and thyroid hormones. Heart Fail Rev 2016; 21: 391-399. 10. Gerdes AM, Ojamaa K. Thyroid Hormone and Cardioprotection. Compr Physiol 2016; 6: 1199-1219. 11. Elnakish MT, Ahmed AA, Mohler PJ, Janssen PM. Role of oxidative stress in thyroid hormone-induced cardiomyocyte hypertrophy and associated cardiac dysfunction: An undisclosed story. Oxid Med Cell Longev 2015; 2015: 854265. 12. Kuzman JA, O’Connell TD, Gerdes AM. Rapamycin prevents thyroid hormone-induced cardiac hypertrophy. Endocrinology 2007; 148: 3477-3484. 13. Suarez J, Scott BT, Suarez-Ramirez J, Chavira CV, Dillmann WH. Thyroid hormone inhibits ERK phosphorylation in pressure overload-induced hypertrophied mouse hearts through a receptor-mediated mechanism. Am J Physiol Cell Physiol 2010; 299: C1524-1529. 14. Pantos C, Mourouzis I, Saranteas T, Clavé G, Ligeret H, Noack-Fraissignes P, et al. Thyroid hormone improves postischaemic recovery of function while limiting apoptosis: a new therapeutic approach to support hemodynamics in the setting of ischaemia–reperfusion? Basic Res Cardiol 2009; 104: 69–77. 15. Honda H, Iwata T, Mochizuki T, Kogo H. Changes in vascular reactivity induced by acute hyperthyroidism in isolated rat aortae. Gen Pharmacol 2000; 34: 429-434. 16. Weltman NY, Ojamaa K, Savinova OV, Chen YF, Schlenker EH, Zucchi R, et al. Restoration of cardiac tissue thyroid hormone status in experimental hypothyroidism: a dose-response study in female rats. Endocrinology 2013; 154: 2542-2552. 17. Tavares FM, da Silva IB, Gomes DA, Barreto-Chaves ML. Angiotensin II type 2 receptor (AT2R) is associated with increased tolerance of the hyperthyroid heart to ischemia-reperfusion. Cardiovasc Drugs Ther 2013; 27: 393-402. 18. Ulm S, Liu W, Zi M, Tsui H, Chowdhury SK, Endo S, et al. Targeted deletion of ERK2 in cardiomyocytes attenuates hypertrophic response but provokes pathological stress induced cardiac dysfunction. J Mol Cell Cardiol 2014; 72: 104-116. 19. Skrzypiec-Spring M, Grotthus B, Szelag A, Schulz R. Isolated heart perfusion according to Langendorff-Still viable in the new millennium. J Pharmacol Toxicol Methods 2007; 55:113-126. 20. Bell RM, Mocanu MM, Yellon DM. Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion. J Mol Cell Cardiol 2011; 50: 940-950. 21. Liao R, Podesser BK, Lim CC. The continuing evolution of the Langendorff and ejecting murine heart: new advances in cardiac phenotyping. Am J Physiol Heart Circ Physiol 2012; 303, H156–H167. 22. López RM, Castillo MC, López JS, Guevara G, López P, Castillo EF. Activation of upregulated angiotensin II type 2 receptors decreases carotid pulse pressure in rats with suprarenal abdominal aortic coarctation. Clin Exp Hypertens 2015; 37: 271-279. 23. Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev 2014; 94: 355-382. 24. Segal J, Masalha S, Schwalb H, Merin G, Borman JB, Uretzky G. Acute effect of thyroid hormone in the rat heart: role of calcium. J Endocrinol 1996; 149: 73-80. 25. Yoneda K, Takasu N, Higa S, Oshiro C, Oshiro Y, Shimabukuro M, et al. Direct effects of thyroid hormones on rat coronary artery: nongenomic effects of triiodothyronine and thyroxine. Thyroid 1998; 8: 609-613. 26. Klein I, Ojamaa K. Thyroid hormone and the cardiovascular system. N Engl J Med 2001; 344: 501-509. 27. Iordanidou A, Hadzopoulou-Cladaras M, Lazou A. Non-genomic effects of thyroid hormone in adult cardiac myocytes: relevance to gene expression and cell growth. Mol Cell Biochem 2010; 340: 291-300. 28. Pantos C, Xinaris C, Mourouzis I, Malliopoulou V, Kardami E, Cokkinos DV. Thyroid hormone changes cardiomyocyte shape and geometry via ERK signaling pathway: potential therapeutic implications in reversing cardiac remodeling? Mol Cell Biochem 2007; 297: 65-72. 29. Kenessey A, Ojamaa K. Thyroid hormone stimulates protein synthesis in the cardiomyocyte by activating the Akt-mTOR and p70S6K pathways. J Biol Chem 2006; 281: 20666-20672. 30. Dorn GW II. The fuzzy logic of physiological cardiac hypertrophy. Hypertension 2007; 49: 962-970. 31. Kehat I, Molkentin JD. Extracellular signal-regulated kinase 1/2 (ERK1/2) signaling in cardiac hypertrophy. Ann N Y Acad Sci 2010; 1188: 96-102. 32. McMullen JR, Jennings GL. Differences between pathological and physiological cardiac hypertrophy: novel therapeutic strategies to treat heart failure. Clin Exp Pharmacol Physiol 2007; 34: 255-262. 33. Bernardo BC, Weeks KL, Pretorius L, McMullen JR. Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 2010; 128: 191-227. 34. Lorenz K, Schmitt JP, Vidal M, Lohse MJ. Cardiac hypertrophy: targeting Raf/MEK/ERK1/2-signaling. Int J Biochem Cell Biol 2009; 41: 2351-2355. 35. Shiojima I, Walsh K. Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes Dev 2006; 20: 3347-3365. 36. Degens H, Gilde AJ, Lindhout M, Willemsen PH, Van Der Vusse GJ, Van Bilsen M. Functional and metabolic adaptation of the heart to prolonged thyroid hormone treatment. Am J Physiol Heart Circ Physiol 2003; 284: H108-115. 37. Kuzman JA, Vogelsang KA, Thomas TA, Gerdes AM. L-Thyroxine activates Akt signaling in the heart. J Mol Cell Cardiol 2005; 39: 251-258. 38. Araujo AS, Schenkel P, Enzveiler AT, Fernandes TR, Partata WA, Llesuy S, et al. The role of redox signaling in cardiac hypertrophy induced by experimental hyperthyroidism. J Mol Endocrinol 2008; 41: 423-430. 39. Araujo AS, Fernandes T, Ribeiro MF, Khaper N, Belló-Klein A. Redox regulation of myocardial ERK 1/2 phosphorylation in experimental hyperthyroidism: role of thioredoxin-peroxiredoxin system. J Cardiovasc Pharmacol 2010; 56: 513-517. 40. Fernandes RO, Dreher GJ, Schenkel PC, Fernandes TR, Ribeiro MF, Araujo AS, et al. Redox status and pro-survival/pro-apoptotic protein expression in the early cardiac hypertrophy induced by experimental hyperthyroidism. Cell Biochem Funct 2011; 29: 617-623. | ||
آمار تعداد مشاهده مقاله: 632 تعداد دریافت فایل اصل مقاله: 396 |