In vitro and in vivo activity of the essential oil and nanoemulsion of Cymbopogon flexuosus against Trichomonas gallinae | ||
Avicenna Journal of Phytomedicine | ||
مقاله 4، دوره 11، شماره 1، فروردین و اردیبهشت 2021، صفحه 32-43 اصل مقاله (654.95 K) | ||
نوع مقاله: Original Research Article | ||
شناسه دیجیتال (DOI): 10.22038/ajp.2020.15662 | ||
نویسندگان | ||
Bruna Baccega* 1؛ Yan Islabão1؛ Alexia Brauner de Mello1؛ Filipe Obelar Martins1؛ Carolina Caetano dos Santos1؛ Aline Ferreira Ourique2؛ Samanta da Silva Gundel2؛ Marcia Raquel Pegoraro de Macedo1؛ Élvia Elena Silveira Vianna1؛ Nara Amélia da Rosa Farias1؛ Camila Belmonte Oliveira1 | ||
1Department of Microbiology and Parasitology- Federal University of Pelotas, Pelotas, RS, Brazil | ||
2Laboratory of Nanotechnology - Franciscan University, Santa Maria, RS, Brazil | ||
چکیده | ||
Objective: This study was done to evaluate the in vitro and in vivo effects of the essential oil (OE-CL) and nanoemulsion (N-CL) of Cymbopogon flexuosus against Trichomonas gallinae. Materials and Methods: In vitro assays were done with 106 parasites and OE-CL and N-CL in the concentrations: 110, 220, 330, 440, 550, 660, 770 and 880 µg/ml and four controls: CN (culture medium and trophozoites), MTZ (trophozoites plus 800 µg/ml of metronidazole), TW (trophozoites plus vehicles used for solubilization of derivatives (0.01% Tween) and NB (blank nanoemulsion 880 µg/ml). The in vivo assay was done in 35 quails (Coturnix coturnix) infected experimentally 4x104 mg/kg, were divided in seven groups (n=5): A (control–healthy), B (control infected), C (control TW 0.01%), D (NB 0.88 mg/kg), E (drug MTZ 25 mg/kg, F (OE-CL at 0.55 mg/kg ) and G (N-CL at 0.44 mg/kg), during 7 consecutive days. Results: The in vitro test showed that the OE-CL (550 μg/ml) and N-CL (440 μg/ml) concentrations reduced the trophozoites viability in 100%. In the in vivo test, the treatment with OE-CL was efficient on the 4th treatment day and the N-CL after the 3rd day, and the MTZ in the therapeutic concentration was efficient on the 7th day. Conclusion: It can be observed in this study that the lemon grass has natural potential antitrichomonal activity against T. gallinae in vitro and in vivo. | ||
کلیدواژهها | ||
phytotherapy؛ nanotechnology؛ birds؛ protozoa؛ lemon grass | ||
مراجع | ||
Adukwu EC, Allen SC, Phillips CA. 2012. The anti-biofilm activity of lemongrass (Cymbopogon flexuosus) and grapefruit (Citrus paradisi) essential oils against five strains of Staphylococcus aureus. J Appl Microbiol, 113:1217-27. Ahmad A, Viljoen A. 2015. The in vitro antimicrobial activity of Cymbopogon essential oil (lemon grass) and its interaction with silver ions. Phytomedicine, 22:657- 665. Bahamonde-Norambuena D, Molina-Pereira A, Cantin M, Muñoz M, Zepeda K, Vilos C. 2015. Polymeric nanoparticles in dermocosmetic. Int J Morphol, 33:1563- 1568. Bondurant RH, Honigberg BM. 1994. Trichomonads of veterinary importance. In: Academic Press (Eds.), Parasitic Protozoa, p. 111–206, New York. Bunbury N, Jones CG, Greenwood AG, Bell DJ. 2007. Trichomonas gallinae in Mauritian Columbids: Implications for an endangered endemic. J Wild Dis, 43:399– 407. Cepicka I, Kutišová K, Tachezy J, Kulda J, Flegr J. 2005 Cryptic species within the Tetratrichomonas gallinarum species complex revealed by molecular polymorphism. Vet Parasitol, 128:11–21. Cudmore SL, Delgaty KL, HaywardMcClelland SF, Petrin DP, Garber GE. 2004. Treatment of infections caused by metronidazole-resistant Trichomonas vaginalis. Clin Microbiol Rev, 17:783-93. Diamond, LS. 1957. The establishment of various trichomonads of animals and man in axenic cultures. J Parasitol, 43:488-490. Dingsdag SA, Hunter N. 2018. Metronidazole: an update on metabolism, structure– cytotoxicity and resistance mechanisms. J Antimicrob Chemother, 73:265-79. Dunne RL, Dunn LA, Upcroft P, O’Donoghue PJ, Upcroft JA. 2003. Drug resistance in the sexually transmitted protozoan Trichomonas vaginalis. Cell Res, 13:239- 49. Fang L, Du D, Ding GZ, Si YK, Yu SS, Liu Y, Wang WJ, Ma SG, Xu S, Qu J, Wang JM, Liu YX. 2010. Neolignans and glycosides from the stem bark of Illicium difengpi. J Nat Product, 73: 818-824. Forrester DJ, Foster GW. 2009. Trichomonosis. In: Atkinson, C.T., Thomas, N.J.; Hunter, D.B. (Eds.), Parasitic Diseases of Wild Birds, pp.120-153, Oxford, UK: WileyBlackwell. Franssen FFJ, Lumeij JT. 1992. In vitro nitroimidazole resistance of Trichomonas gallinae and successful therapy with an increased dosage of ronidazole in racing pigeons (Columba livia domestica). J Vet Pharmacol Therapeut, 15:409–415. Ganjewala D1, Luthra R. 2010. Essential oil biosynthesis and regulation in the genus Cymbopogon. Nat Prod Commun, 5:163-72. Gaspar da Silva D, Barton E, Bunbury N, Lunness P, Bell DJ, Tyler KM. 2007. Molecular identity and heterogeneity of trichomonad parasites in a closed avian population. Infect Genet Evolut, 7:433-440. Gerhold RW, Tate CM, Gibbs SE, Mead DG, Allison AB, FISCHER JR. 2007. Necropsy findings and arbovirus surveillance in mourning dovesfrom southeastern United States. J Wild Dis, 43:129-135. Gündel SS, de Souza MB, Quatrin PM, Klein B, Wagner R, Gündel A, Vaucher R de A, Santos RCV, Ourique AF. 2018. Nanoemulsions containing Cymbopogon flexuosus essential oil: Development, characterization, stability study and evaluation of antimicrobial and antibiofilm activities. Microb Pathog, 118:268-276. Hosseini SF, Zandi M, Rezaei M, Farahmandghavi F. 2013. Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in vitro release study. Carbohydr Polym, 95:50-56. Hussain AI, Anwar F, Shahid M, Ashraf M, Przybylski R, 2010. Chemical composition, antioxidant and antimicrobial activities of essential oil of spearmint (Mentha spicata L.) from Pakistan. J Essent Oil Res, 22:78- 84. Hussein R, El-Halabi M, Ghaith O, Jurdi N, Baccega et al. AJP, Vol. 11, No. 1, Jan-Feb 2021 42 Azar C, Mansour N, Sharara AI. 2011. Severe hepatotoxicity associated with the combination of spiramycin plus metronidazole. Arab J Gastroenterol, 12:44– 47. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evolut, 35:1547-1549. Lumeij JT, Zwijnenberg RJG. 1990. Failure of nitro-imidazole drugs to control trichomoniasis in the racing pigeon (Columba livia domestica). Avian Pathol, 19:165-166. Mehlhorn H, Walldorf V, Klimpel S, Schmahl G, Al-Quraishy A, Walldorf U, Mehlhorn B, Bätza HJ. 2009. Entomological survey on vectors of Bluetongue virus in North RhineWestphalia (Germany during 2007–2008). Parasitol Res, 102:321-9. Munoz E, Castella J, Gutierrez J. 1998. In vivo and sensitivity of Trichomonas gallinae to some nitroimidazole drugs. Vet Parasitol, 31: 239-46. Nair J, Christensen D, Yu P, Beattie AD, McAllister T, Damiran D, Preston N, Fuhr L, McKinnon JJ. 2016. A nutritional evaluation of common barley varieties grown for silage by beef and dairy producers in western Canada. Can J Anim Sci, 96:598- 608. Oliveira MMM, Brugnera DF, Nascimento JA & Piccoli RH. 2012. Control of planktonic and sessile bacterial cells by essential oils. Food and Bioproducts Processing, 90:809- 18. Rein MF. Trichomonas vaginalis. 1995. In: Mandell, Douglas, Bennet. Principles and practice of infectious diseases (Eds.) Churchill Livingstone, 2493-7, New York: Rouffaer L, Adriaensen C, de Boeck C, Claerebout E, Martel A. 2014. Racing pigeons: a reservoir for nitro-imidazoleresistant Trichomonas gallinae. J Parasitol, 100:360-3. Salem W, Leitner DR, Zingl FG, Schratter G, Prassl R, Goessler W, Reidl J, Schild S. 2015. Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. Int J Med Microbiol, 305:85–95. Sansano-Maestre J, Garijo-Toledo MM, Gómez-Muñoz MT. 2009. Prevalence and genotyping of Trichomonas gallinae in pigeons and birds of prey. Avian Pathol, 38: 201-7. Santoro GF, Cardoso MG, Guimarães LG, Salgado AP, Mena-Barreto RF, Soares MJ 2007b. Effect of oregano (Origanum vulgare L.) and thyme (Thymus vulgaris L.) essential oils on Trypanosoma cruzi (Protozoa: Kinetoplastida) growth and ultrastructure. Parasitol Res 100: 783-790. Seddiek A, El-Shorbagy MM, Khater HF, Ali AM. 2014. The antitrichomonal efficacy of garlic and metronidazole against Trichomonas gallinae infecting domestic pigeons. Parasitol Res, 113:1319–1329. Seddiek SA, Ali MM, Khater HF, El-Shorbagy MM. 2011 Anthelmintic activity of the white wormwood, Artemisia herba-alba against Heterakis gallinarum infecting turkey poults. J Med Plant Res, 5:3946– 3957. Sena-Lopes Â, das Neves RN, Bezerra FSB, de Oliveira Silva MT, Nobre PC, Perin G, Alves D, Savegnago L, Begnini KR, Seixas FK, Collares T, Borsuk S. 2017. Antiparasitic activity of 1,3-dioxolanes containing tellurium in Trichomonas vaginalis. Biomed Pharmacot, 89: 284-287. Shukla R, Kumar A, Singh P, Dubey NK. 2009. Efficacy 1 of Lippia alba (Mill) N. E. Brown essential oil and its monoterpenes aldehyde constituents aganst fungi isolated from some edible legume seeds and aflatoxin B1 production. Int J Food Microbiol, 135:165- 170. Silva CB, Guterres SS, Weisheimer V, Schapoval E.E. 2008. Antifungal activity of the lemongrass oil and citral against Candida spp. Braz J Inf Dis, 12:1763- 1766. Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma MJ. 2005. Nanoemulsions. Curr Opin Colloid Int, 10:102-110. Sonneville-Aubrun O, Simonnet JT, L'alloret F. 2004. Nanoemulsions a new vehicle for skincare products. Adv Col Interf Sci, 108- 109:145-149. Sun H, Liu K, Liu W, Wang W, Guo C, Tang B, Gu J, Zhang J, Li H, Mao X, Zou Q, Zeng H. 2012. Development and characterization of a novel nanoemulsion drugdelivery system for potential application in oral delivery of protein drugs. Int J Nanomed, 7:5529–5543. Tabari MA, Youssefi MR, Moghadamnia AA. 2017. Antitrichomonal activity of Peganum harmala alkaloid extract against trichomoniasis in Pigeon (Columba livia In vitro and in vivo activity of the Cymbopogon flexuosus on Trichomonas gallinae AJP, Vol. 11, No. 1, Jan-Feb 2021 43 domestica), Br Poult Sci, 58: 236-241. Tao N, OuYang Q, Jia L. 2014. Citral inhibitsmycelial growth of Penicillium italicum by a membrane damage mechanism. Food Control, 41:116–121. Tracy JW, Webster LT. 1996.Drugs used in the chemoterapy of protozoal infections. In: Goodman and Gilman's (Eds.), The pharmacological basis of therapeutics.: McGraw-Hill Companies, p. 995-8, New York. Trados T, Izquierdo P, Esquena J, Solans C. 2004. Formation and stability of nano emulsions. Adv coll Interf Sci, 108:303-318. Upcroft P, Upcroft JA. 2001 Drug targets and mechanisms of resistance in the anaerobic protozoa. Clin Microbiol Ver, 14:150-64. Wen-Chien L, Huang DW, Wang CR, Yeh CH, Tsai JC, Huang YT, Li PH. 2018. Preparation, characterization, and antimicrobial activity of nanoemulsions incorparating citral essential oil. J Food Grug anal, 26:82-89. Xavier MN, Alves JM, Carneiro NS, Souchie EL, Silva EAJ, Martins CHG, Ambrosio MALV, Egea MB, Alves CCF, Miranda MLD. 2016. Composição química do óleo essencial de Cardiopetalum calophyllum Schltdl. (Annonaceae) e suas atividades antioxidante, antibacteriana e antifúngica. Rev Virt Quím, 8:1433. Youssefi MR, Tabari MA, Moghadamnia AA. 2017. In vitro and in vivo activity of Artemisia sieberi against Trichomonas gallinae. Iran J Veterin Res, 18:25. Zhou H, Tao N, Jia L. 2014. Antifungal activity of citral, octanal and 𝛼-terpineol against Geotrichumcitri-aurantii,” Food Control, 37: 277–283. Zimre-Grabensteiner E, Arshad N, Amin A, Hess M. 2011. Genetically different clonal isolates of Trichomonas gallinae, obtained from the same bird, can vary in their drug susceptibility, an in vitro evidence. Parasitol Int, 60:213-5. | ||
آمار تعداد مشاهده مقاله: 18,279 تعداد دریافت فایل اصل مقاله: 4,036 |