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Introduction: Accurate and early diagnosis of cancer is an important issue in modern healthcare systems. 
Raman spectroscopy, as a non-invasive optical technique for evaluating intact tissues at a molecular level, 
has attracted the researchers’ attention. Despite recent advances, efforts are still being made to improve the 
sensitivity and specificity of Raman spectroscopy-based cancer detection. The present study aimed to 
identify three classes of breast tissues, that is, normal tissues, benign lesions, and cancer tissues, using an 
artificial neural network (ANN). 
Material and Methods: To improve the ANN discrimination power, a novel topologically optimized ANN, 
known as self-constructing neural network (SCNN), was developed in this study. The ant colony 
optimization algorithm was applied to optimize the topology of the network. The results of SCNN were 
compared with the conventional ANN, that is, multilayer perceptron (MLP). 
Results: Based on the results, the developed SCNN showed a classification accuracy of 95%. 
Conclusion: In this study, a novel neural network (SCNN) was proposed, which was topologically optimized 
to improve the discrimination power of ANNs. The SCNN accuracy was determined to be 95% in Raman 
spectroscopy-based breast cancer diagnosis.  
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Introduction 
Cancers are considered as severe threats to human 

health in the modern era. Breast cancer is the most 
common type of cancer among women, accounting for 
thousands of deaths each year. Early cancer diagnosis 
can significantly improve the treatment outcomes [1]. 
Breast cancer is often characterized by screening 
mammography, followed by histopathological 
analysis. Breast-conserving surgery is also prescribed 
as part of treatment in some cases. The term “breast-
conserving surgery” refers to the preservation of 
healthy tissues as far as possible, while thoroughly 
removing the tumor. The use of efficient tools for 
examining large tissue areas and accurate 
discrimination of lesions in real time can be of 
substantial importance for surgeons [2].  

Extensive research has focused on developing 
more rapid and accurate methods of cancer diagnosis. 
Despite major advances, histopathology remains the 
gold standard diagnostic method. However, 
histopathology is associated with limitations, such as 
invasiveness, prolonged response time, and 
dependence on the experience and skills of 
pathologists. To overcome these shortcomings, 
numerous optical techniques have been employed in 
cancer diagnosis, including optical coherence 
tomography (OCT), white light reflectance (WLR) 

imaging, autofluorescence imaging, and Raman 
spectroscopy. Due to the lack of molecular data in OCT 
and WLR, these methods show intrinsically low 
specificities; similarly, autofluorescence imaging has 
low specificity [2]. On the other hand, Raman 
spectroscopy, by analyzing the vibrations of molecular 
bonds, can provide high molecular specificity. 

Raman spectroscopy is a non-invasive optical 
technique, which assesses intact tissues within a short 
period and even allows for real-time assessments. 
Accordingly, this technique has attracted the attention 
of many cancer researchers [2-12]. Raman 
spectroscopy is based on the inelastic scattering of 
monochromatic light. Depending on the inelastic 
scattering, the color (wavelength) of scattered light 
differs from the incident light. By measuring the 
intensity of scattered light at higher wavelengths than 
the incident wavelength, the Raman spectrum 
represents a fingerprint of the sample [13], and 
various lesions (e.g., cancer) can be identified through 
the analysis of the Raman spectra.  

Despite the feasibility of non-invasive, real-time, 
and in-vivo diagnosis of cancer based on the Raman 
spectra, improvement of the sensitivity and specificity 
of cancer diagnosis remains a major issue in the 
clinical application of this technique. Accordingly, 
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numerous artificial intelligence algorithms have been 
employed to extract beneficial data from the Raman 
spectra, including artificial neural networks (ANNs) 
[14, 15]. In this regard, M. Jermyn et al. used a three-
layer neural network for detecting brain cancer in the 
presence of room light [14]. In another study, J. Liu et 
al. [15] used convolutional neural networks for 
identifying chemical species and found that 
convolutional neural networks perform better than 
some classification methods, without the need for the 
preprocessing steps. 

In the present study, identification of breast 
tissues was performed in three classes of normal 
tissues, benign lesions, and cancer tissues, using an 
ANN. To improve the ANN discrimination power, a 
novel ANN, called the self-constructing neural 
network (SCNN), was developed. The results of SCNN 
were compared with the conventional ANN, known as 
multilayer perceptron (MLP). We used SCNN in 
another study to analyze the Raman spectra of 
secondary and primary cancers [16]; the full spectra 
of various primary and secondary cancers were also 
applied in the network. According to the obtained 
results, SCNN performed better than MLP. In the 
mentioned study, genetic algorithm was also used to 
optimize the neural network architecture, while in the 
present study, we used the ant colony optimization 
(ACO) for the same purpose, as ACO has a shorter 
processing time than other evolutionary-based 
optimization methods [17, 18]. In other words, in the 
current study, we studied another version of SCNN for 
evaluating the Raman spectra of breast cancer.  

 

Materials and Methods 
Specimens  

A total of 11 breast tissue specimens were obtained 
from the histopathology laboratory of Shahid Beheshti 
Hospital in Kashan, Iran, including three normal tissues 
(tumor margin), five benign lesions (fibrocystic 
changes), and three cancer tissues (invasive ductal 
carcinoma). The specimens were fixed in a formalin 
solution (10% neutral buffered formaldehyde in water).   

 

Spectroscopy  
The specimens were examined, using Raman 

spectroscopy after being removed from the formalin 
solution. To prevent the interference of the formalin 
spectrum with the spectra of the specimens, each 
specimen was exposed to fresh air for several minutes so 

that formalin would evaporate from its surface. The 
spectra were measured within the range of 500-3200 cm-

1 with a resolution less than 3 cm-1, using a micro-
Raman system, equipped with a lens (50x) and a diode 
laser (785 nm; power, 10 mW). A total of 3-6 spectra 
were measured for each specimen, and 49 spectra were 
finally collected. After spectroscopy, the specimens 
were placed in the formalin solution again and sent back 
to the histopathology laboratory to continue the 
histopathological analysis and make the final diagnosis. 
The spectra of each specimen were assigned a class 
label, based on the pathologist’s diagnosis. Finally, a 
dataset, containing 14 normal, 18 benign, and 17 
cancerous spectra, was obtained.  
 

Preprocessing 
For a more accurate detection of the peaks, the 

resolution of the spectra was initially enhanced to 1 cm-

1, using spline interpolation. Following that, the baseline 
of the spectra (mainly originating from fluorescence) 
was eliminated, using the algorithm developed by 
Krishna (2012), known as the range-independent 
algorithm (RIA) [19]. The RIA cuts the spectrum into 
determined wavenumber ranges, thereby extrapolating 
the spectrum on both ends by the linear least square 
fitting. Next, the extrapolated spectrum is extended by 
adding two Gaussian peaks with determined heights and 
widths to both ends, followed by iterative smoothing. In 
each iteration, the minimum smoothed and original 
spectra are preserved until complete retrieval of the two 
terminal Gaussian peaks [19]. In the present study, RIA 
was used in the full wavenumber range. The height and 
full width at half maximum (FWHM) of the two added 

Gaussian peaks were found to be twice the maximum 
height of the spectrum and 40 cm−1, respectively.  

A zero-order Savitzky-Golay filter, with a span of 20 
spectral points, was used for smoothing. Following that, 
the spectra were normalized in terms of the intensity of 
Amide I band (1,655 cm−1). It should be noted that the 
ratio of other Raman bands to the Amide I band has 
been used as a discriminatory feature in several studies 
on Raman spectroscopy-based cancer diagnosis [3]; it 
also appeared in all spectra in the current study. Finally, 
12 most important bands of biological samples were 
determined (Table 1), and the normalized intensity of 
these bands was extracted as a discriminatory feature. 
All processing was performed in MATLAB 2014a 
software platform. 

 

 

Table 1. Position and assignment of major peaks in the Raman spectra of specimens [20-27] 
 

Assignment Peak position # Assignment Peak position # 

s(C-C) skeletal lipids 1110-1130 7 Polysaccharide 830-880 1 

Amide III protein/ ip(C-H) lipids 1262-1278 8 (C-C) -helix proline/ valine (protein) 910-940 2 

CH2 twisting and wagging lipids 1285-1304 9 s(C-C) phenylalanine 1005-1030 3 

CH2 deformation lipids or 
proteins 

1422-1442 10 ip(C-H) phenylalanine 1030-1050 4 

(CH2) and (CH3) proteins 1445-1460 11 as(C-C) skeletal lipids 1050-1068 5 

(C=O) lipids 1740-1750 12 
(C-C) or (C-O) lipids/(C-C) or 

s(PO2) nucleic acids 
1075-1087 6 
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Figure 1. a) Hinton matrix; b) connection diagram of MLP; c) Hinton matrix; and d) connection diagram of SCNN (non-deterministic parameters 
are shown in gray). 

 

Identification based on neural networks 
The spectra were classified using the conventional 

MLP neural network and SCNN as a novel 
topologically optimized neural network. The MLP 
network was used with ten hidden neurons in a single 
hidden layer with a tangent sigmoid transfer function; 
three output neurons (per three classes) with a softmax 
transfer function; and 12 inputs for every feature. The 
performance and learning functions of the network were 
selected as cross entropy and scaled conjugate gradient, 
respectively. 

The SCNN optimizes its topology and weight during 
learning processes. In the present study, the network 
topology referred to the connections of layers and the 
size of hidden layers. Also, a similar SCNN to MLP 
was employed with a single hidden layer. The other 
specifications of the network (e.g., transfer and learning 
functions) were also the same as MLP. Figures 1a and 
1c depict the Hinton matrices (matrices of network 
connections) of MLP and SCNN, respectively. The 
Hinton matrix is composed of three matrices, including 
the input-to-layer connections (Input-Connect), layer 
connections to each other (Layer-Connect), and bias-to-
layer connections (Bias-Connect).  

As shown in Figure 1, the Hinton matrix of MLP 
included a feed-forward deterministic network 
(presence/absence of a connection illustrated with 
dark/white cells, respectively), while the Hinton matrix 
of SCNN included six non-deterministic elements (gray 
cells), which could be either zero (absence of 
connection) or one (presence of connection). Overall, an 
optimization algorithm can determine the values of 
these non-deterministic binary elements and the number 
of hidden neurons as a scalar within the range of 1-30. 

Figures 1b and 1d show the schematic diagrams of the 
input, layer, and bias connections in MLP and SCNN, 
respectively. All of the non-deterministic values are 
shown in gray. 

In the present study, the ACO was used to optimize 
the topology of the network, according to the process 
shown in Figure 2. The objective function of topology 
optimization was considered as maximum classification 
accuracy in the training data. As shown in Figure 2, in 
ACO, sets of artificial ants (nAnt) search for the best 
network to discriminate classes in a high-dimensional 
variable space (six non-deterministic binary elements 
for connections and a scalar for the number of hidden 
neurons). Each set of artificial ants corresponds to one 
subset of variables. The artificial ants communicate 
through a virtual pheromone, distributed on the 
variables, with a primary value of τ. The pheromones 
change dynamically in iterations and reinforce 
themselves using positive feedback. Simultaneously, the 
pheromone decays gradually at an evaporation rate of ρ 
to emboss the best values. The ACO iteratively executes 
a loop for MAXit iterations to find the best network. In 
the present study, we used the ACO parameters, as 
shown in Table 2. 

 
Table 2. Values and definitions of ACO parameters 
 

Parameters Values 

Maximum number of iterations (Maxit) 100 

Number of ants (nAnt) 9 

Primary pheromone (τ) 0.5 

Exponential weight of pheromone (α) 0.5 

Evaporation rate of pheromone (ρ) 0.5 

 

 



   Maliheh Eshraghi-Arani and Zohreh Dehghani-Bidgoli                                                         Raman-based cancer detection using neural networks 
    

Iran J Med Phys, Vol. 18, No. 2, March 2021                                                                                92 

                
 
Figure 2. Diagram of developing the optimized neural network in SCNN 

 
To evaluate the generalization of MLP and SCNN 

networks for the untrained data and to prevent over-
fitting, we used the leave-one-out cross-validation 
(LOOCV). In the LOOCV procedure, a dataset with N 
instances is trained with N-1 instances and tested with 
one set-aside instance. Next, the test instance is returned 

to the dataset, and the process is repeated with another 
instance until all instances are included in the test. 
Finally, a confusion matrix is composed with the N test 
results. Figure 3 depicts the diagram of the described 
procedure.  
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Figure 3. Diagram of the entire procedure 
 

Results 
Figure 4 presents the mean pre-processed spectra of 

the normal, cancerous, and benign tissue classes with 

solid, dotted, and dashed lines, respectively. Moreover, 

the spectra are demonstrated as the intensity (vertical 

axis) versus each wavenumber (horizontal axis).  

Figures 5a and 5b depict the topology of the MLP 

and the optimized SCNN, respectively. The SCNN, 

obtained from the entire training dataset, is presented, 

considering the topology of SCNN changes in each 

training round of cross-validation. 

Tables 3 and 4 show the confusion matrices of MLP 

and SCNN, respectively. The classification accuracy of 

MLP and SCNN was estimated at 55% and 95%, 

respectively. 

 

 
 
Figure 4.The mean spectra of normal, benign, and cancer tissue classes after preprocessing 



   Maliheh Eshraghi-Arani and Zohreh Dehghani-Bidgoli                                                         Raman-based cancer detection using neural networks 
    

Iran J Med Phys, Vol. 18, No. 2, March 2021                                                                                94 

 
Figure 5. Topology of a) MLP and b) SCNN 

 
Table 3. Confusion matrix of classification based on the MLP 

 

Target Class 

S C B A  

O
u

tp
u
t 

C
la

ss
 

0.7059 4 1 12 A 

0.5714 1 8 5 B 

0.3889 7 3 8 C 

0.5510 0.5833 0.6667 0.4800 P 

 
 

Table 4.Confusion matrix of classification based on the SCNN 

 

Target Class 

S C B A  

O
u

tp
u
t 

C
la

ss
 

1 0 0 17 A 

0.8572 0 12 2 B 

1 18 0 0 C 

0.9592 1 1 0.8947 P 

 

Discussion 
In the current study, we improved the accuracy of 

Raman spectroscopy-based cancer detection using 
SCNN, based on MLP. The accuracy of SCNN was 
determined to be 95% in discriminating between 
normal, benign, and cancerous breast tissues. Also, we 

used the MLP as the basic network, as it is frequently 
used for analyzing the Raman spectra [6]. The proposed 
network in our study was based on MLP, which was 
incorporated into the network (Figure 1).  

According to the present findings, SCNN can 
enhance the power of MLP, although the network 
complexity and processing time increased, as well. 
However, the SCNN complexity was significantly lower 
than deep convolutional neural networks that have been 
recently employed in the Raman spectrum recognition 
[15]. Therefore, further comparative investigations on 
SCNN and deep neural networks are required for 
reaching a more definite conclusion. 

In another study on the same database using the 
quadratic discriminant analysis, the accuracy of the 
network was reported to be 73% [20], which is lower 
than the value obtained in the present study, using 
SCNN (95%). Also, the mentioned study indicated that 
the use of proper artificial intelligence approaches for 
the recognition of Raman spectra can help overcome the 
limitations of interpreting the Raman spectra and their 
clinical translation. The current study showed that 
SCNN could dramatically improve the sensitivity and 
specificity of Raman spectroscopy-based cancer 
detection and facilitate its translation to clinics. 

 

Conclusion 
In this study, a novel neural network, called the 

SCNN, was proposed, which was topologically 
optimized using the ACO on the training dataset. This 
neural network was used to discriminate the Raman 
spectra of normal, benign, and cancerous breast tissues. 
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The results indicated that the SCNN could significantly 
improve the classification power, based on the MLP.  
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