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A New Method for Characterization of Biological Particles in Microscopic 
Videos: Hypothesis Testing Based on a Combination of Stochastic Modeling and 

Graph Theory

Seyed Vahab Shojaedini1*                               

Abstract

Introduction
Studying motility of biological objects is an important parameter in many biomedical processes. Therefore, 
automated analyzing methods via microscopic videos are becoming an important step in recent researches. 
Materials and Methods
In the proposed method of this article, a hypothesis testing function is defined to separate biological particles 
from artifact and noise in captured video. Then, a decision about each hypothesis is made in the following 
steps: selecting primary candidates using stochastic modeling, pruning false candidates using graph theory, 
and confirming remained particles by Kalman filtering. 
Results
Performance of the proposed method is evaluated on real videos containing low and high densities of live 
Listeria particles. The results show that in the first scenario, the proposed and MD algorithms detect 95% and 
65% of particles in presence of 2% and 44% false detections, respectively. In the second scenario, the 
proposed and MD algorithms detect 91% and 55% of particles in presence of 14% and 45% false detections, 
respectively.
Conclusion
In the first scenario, the proposed algorithm detects and tracks particles typically 30% and 31% better than 
MD. Moreover, its false detected particles and trajectories are 42% and 27% less than MD. In the second 
scenario, the proposed method detects and tracks particles typically 36% and 38% better than MD, also its 
false detected particles and trajectories are 31% and 18% less than MD. Consequently, better 
characterization of particles in proposed algorithm not only does not lead to extracting more false particles 
and trajectories but also decreases the rate of false characterized particles and trajectories compared with 
existing algorithms. 
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1. Introduction
Motility is a biological term which refers to 
the capability of moving spontaneously in a 
biological process which makes use of energy 
[1]. The motility of small biological objects is 
an essential part of many biomedical processes 
and studying it is necessary for the supervision 
of many living organisms such as motility of 
rolling leukocytes during the inflammation 
process [2], motility of gram-negative 
Escherichia Coli bacteria in meningitis and 
peritonitis [3], rupturing the cell walls of 
bacteria by penicillin [4], motility of stem cells 
in tissue engineering [5], cell motility in 
embryo development [6], and movement of 
sperms in male semen which determines the 
chance of pregnancy [7,8]. New medical 
imaging technologies allow analyzing the 
motility of biological particles in vitro and in 
vivo via microscopic videos [9]. Therefore, 
accurate characterization and tracking of this 
motility in microscopic videos are becoming 
an important step in many biological 
researches [10] and various methods have been 
proposed for them. The oldest method is 
manual characterization and tracking by an 
expert operator which is the most effort-
demanding and time-consuming. Therefore, 
this method is impractical for many data sets 
which contain great numbers of biological 
particles [11]. Therefore, automated methods 
have become essential for biological particle 
characterization. Automated characterization 
methods face several challenges such as: poor 
image quality, varying particle populations due 
to mitotic division and particles entering or 
leaving the field of view, and the possibility of 
particles touching each other without showing 
enough contrast in the captured video [12]. 
Several methods have been proposed for 
automatic characterization of biological 
particles. There is one class of methods that 
characterizes biological particles using their 
edge and shape information. The close 
proximity of particles and occlusion are the
main limitations of this class of methods [13]. 
Some methods make use of centroid relocation 
to characterize biological particles. These 

methods face many problems because of 
ignoring a large amount of information about 
particles such as size, shape, and velocity [14]. 
Contour-based methods have shown 
significant potentials for characterization of 
biological particles but their performance is 
closely dependent on primary knowledge 
about the shape and the scale of the particles, 
which is a considerable limitation for this 
group of methods [15]. Some researches 
utilize watershed method to characterize 
biological particles but this method has some 
drawbacks such as its sensitivity to noise and 
its tendency to yield very fragmented results 
[16]. More sophisticated methods include 
various types of template matching. These 
approaches face some challenges such as the 
need to detect the main template separately by 
an expert operator, high sensitivity to shape 
and size of particles, and failing against 
particle rotations which often occurred in
biological particles [17].  
In this paper, a new method for 
characterization of biological particles is 
introduced which is based on a combination of 
stochastic modeling and graph theory. In the 
proposed method, firstly, probable biological 
particles in each frame are extracted using 
their stochastic models and considered as 
“candidates”. In the second step, graph theory 
based pruning algorithm is applied to 
candidates during successive frames, which 
leads to rejection of some false candidates. 
Finally, a Kalman filter-based algorithm is 
applied to the remaining candidates to confirm 
them as biological particles and make their 
motility trajectories. Unlike the existing 
methods, the proposed algorithm may use 
many features of particles such as their history, 
size, and velocity. Moreover, it does not need 
primary knowledge about the particles. 
Furthermore, the proposed method detects 
particles automatically and is capable of 
characterizing particles with rotating motility.  
The paper is organized as follows. In section 
II, the proposed algorithm has been introduced 
including stochastic modeling for candidate 
selection, graph theory for pruning, and 
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trajectory making for candidate confirming. In 
section III, the performance of the proposed 
method is evaluated in two different scenarios 
based on real videos recorded from motility of 
biological particles. In section IV, the 
experiments results are compared with the 
corresponding values resulting from existing 
methods using their effective parameters. 
Conclusion is presented in the last section of 
the paper.

2. Materials and Methods
Suppose I is a video stream of biological 
particles and tI is a frame of I which is 

occurred in time slot t . For each pixel of tI it 

can be written:

TtJjLl

jlII ttlj





0,1,1

),(
       (1)

In the above equation, tljI is the amplitude of a 

pixel in tI which is located in row and column 

equal with l and j , respectively. L And J are 
image sizes and T is the time length of video 
stream I . 
In each time 10 t , the dependence of the 

pixel ljtI )1( 0
to artifact and noise ( 0H ) or its 

dependence to a particle ( 1H ) is determined 
defining hypothesis testing equation (2):  
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In the above equation, ljts )1( 0 
, ljtc )1( 0 

and 

ljtn )1( 0 
show the biological particle, artifact,

and noise components in ljtI )1( 0 
, respectively. 

2.1. Candidate Selection
To determine the dependence of ljtI )1( 0

to each 

of above hypothesis, its history is explained as:
   ljtljljljt IIII

00
,...,, 10                              (3)

Now  ljtI
0

is supposed to be a stochastic 

process and its distribution function is 
constructed as:
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In above equation, ljkt0
 are K number of 

distribution parameters of (.)G which must be 

estimated based on ljtI
0

. For brevity ljkt0


parameters are shown as:
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000 21 ljKtljtljt                                (5)

Equation (6) can be obtained by combination 
of (4) and (5) as:
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The likelihood function (.) is defined as:
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Calculating the logarithm of equation (7), it 
can be written as a sum of probability 
distribution components as shown in (8):
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Now, based on equations (9) ̂ is defined as 
the mean of the logarithm form of likelihood 
function (.) [18].
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Equation (10) shows that  is estimated as ̂

by maximization of ̂ using maximum 
likelihood estimation [19].

 ))|(ˆmax(argˆ
0ljtI                        (10)

Substituting the estimated parameters ̂ in 
equation (4), leads to the stochastic model for 

ljtI )1( 0
based on its history in time period ]0[ 0t

. Now to determine the belonging of ljtI )1( 0
to 

biological particle or artifact and noise its 
dependence probability to the stochastic model 
(4) is calculated as:

  ))ˆ|(|()(
000 )1()1( ljtljtljt IGIPIZ                    (11)

In which P shows the probability. Now,
based on the dependence of each pixel to its 
history, pseudo-image '

)1( 0tI can be 

constructed. For this purpose, each pixel of 

)1( 0tI which its )( )1( 0 ljtIZ  is greater than 
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threshold ljt )1( 0
 , is primarily associated with

artifact or noise and its value considered as 0
in '

)1( 0tI . Otherwise, it can be considered as a 

pixel of a probable biological particle and its
value is maintained unchanged in '

)1( 0tI .

Therefore, the pseudo image '
)1( 0tI contains all 

pixels which have some chance to be a part of 
a biological particle as:
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2.2. Graph Theory-Based Pruning 
Based on equation (12), '

)1( 0tI contains pixels

of )1( 0tI which their dependence probabilities 

to biological particle are greater than their 
dependence probabilities to artifact and noise. 
As a result, '

)1( 0tI includes only some 

candidates and may contain some pixels which 
do not belong to real biological particles. 
Therefore, a pruning procedure is applied to

'
10 tI to reject some false candidates. For this 

purpose, a kind of spatial image processing is 
used in which the connected candidates in 

'
)1( 0tI are extracted using a method which has 

been proposed by Shapiro [20]:
   Wtwttt OOOO )1()1(1)1()1( 0000

,...,,...,             (13)

In the above equation,  )1( 0 tO is the set of 

connected candidates extracted from '
10 tI , 

wtO )1( 0 
is the candidate w from this set and 

W is the number of candidates in '
10 tI . Similar 

to the above set, the string )1( 0 t is defined as 

shown in equation (14).
   Wtwttt )1()1(1)1()1( 0000

,...,,...,               

(14)
In the equation above, wt )1( 0 

 shows number of 

pixels belonging to candidate wtO )1( 0 
. In the 

next step, the members of  )1( 0 tO are ordered 

due to the number of pixels belonging to each 
of them. Then, based on equation (15) and 
(16), the new set of candidates  )1( 0

' tO is 

constructed using the F superior members of 

 )1( 0 tO which numbers of their pixels are 

greater than .
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In above equations, ftO )1( 0
'  shows the f th 

candidate for biological particle in frame 10 t
of video stream I . The algorithm which was 
mentioned during equations (1)-(16) is also 
applied to frame 20 t of video stream, e.g.,

20 tI , and similar to equations (15) and (16), 

'F candidates are extracted in this frame as:
   
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0
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To complete the pruning of false candidates, it
is necessary to assign a member of  )1( 0

' tO -

like ftO )1( 0
'  - to a member of  20

' tO -like 

')2( 0
' ftO  - in such a way that they can be 

considered as a unit biological particle in two 
frames 10 t and 20 t . For this purpose, the 

following steps are done:
Feature vectors for all members of  )1( 0

' tO and

 )2( 0
' tO are extracted containing centroid 

coordinates, velocity in image dimensions, 
size, and size rate. For instance, ftX )1( 0 

and 

')2( 0 ftX  are feature vectors of ftO )1( 0
'  and

')2( 0
' ftO  , respectively. Therefore,  )1( 0 tX and 

 )2( 0tX are feature spaces for  )1( 0
' tO and

 )2( 0
' tO .

Each matched pair ftX )1( 0 
and ')2( 0 ftX  in 

 )1( 0 tX and  )2( 0tX indicates a unique 

biological particle. To evaluate the association, 
the Euclidian distance is calculated between all 
 )1( 0 tX and  )2( 0tX members that leads to a 

distance matrix illustrated as:
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In the above matrix, Fq ,...,2,1 and 
',...,2,1' Fq  have same definitions as f , 'f , 

and ftftff XXd )1(')2(' 00   which is the 

Euclidian distance.
The vector ')2( 0 ftX  is selected from vector 

space )2( 0tX and is compared with vector 

ftX )1( 0 
from vector space  )1( 0 tX . In this 

paper, a kind of graph matching algorithms is 
used for this comparison as follows [21]:
If no member of  )2( 0 tX was matched with

ftX )1( 0 
, then ftX )1( 0 

is selected as matched 

pair of ')2( 0 ftX  and their dependence is shown 

by putting 1 in ff ' element of association 

matrix constructed in frame 20 t which is 

shown as FFtM ')2( 0
][  .

If ftX )1( 0 
had a matched pair in  )2( 0 tX like 

')2( 0 qtX  then and if fqff dd ''  , it means that

')2( 0 ftX  is closer to ftX )1( 0 
than ')2( 0 qtX  and 

consequently matching of ftX )1( 0 
and 

')2( 0 qtX  is neglected and ftX )1( 0 
is matched to 

')2( 0 ftX  by putting 0 and 1 in fq' and ff '

indices of FFtM ')2( 0
][  , respectively.

If ftX )1( 0 
had an matched pair in  20tX like 

')2( 0 qtX  but fqff dd ''  , it means that ')2( 0 qtX 

is closer to ftX )1( 0 
than ')2( 0 ftX  , then fq'

and ff ' indices of FFtM ')2( 0
][  remain 

unchanged as 1 and 0, respectively. 
The above (a), (b), and (c) steps are applied to
all  )2( 0tX and  )1( 0 tX feature vectors and the 

final association matrix FFtM ')2( 0
][  is 

obtained. Each pair of vectors in  )2( 0tX and 

 )1( 0 tX which their related member in 

FFtM ')2( 0
][  is indicated by 1 shows a matched 

pair and specify a characterized biological 
particle. Flowchart of pruning procedure has 
been shown in Figure 1.
2.3. Confirming Particles by Obtaining Their 
Motility Trajectories
In this stage, a Kaman-based algorithm is 
applied to each remained candidate to confirm 
it by obtaining a meaningful motility 
trajectory. Suppose that 
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Which 20 t contains B remained candidates 

in frame 20 t after the mentioned pruning in 

II.2. Similarly, 30 t contains 'B remained 

candidates in 30 t .

 '')3(3 ,...,2,1',
00

BX tt                      (20)

Therefore, for each member of 20 t such as 

)2( 0 tX confirming and finding motility 

trajectory is defined as finding unique ')3( 0 tX

in such a way that it can be considered as the 
future of )2( 0 tX in frame 30 t . In this paper,

a Kaman filter like  has been used for this 

purpose. This procedure for each  is as 

follows:
For each ')3( 0 tX , if it satisfies  then 

')3( 0 tX is indicated as the future of  and 

the filter is updated. If the number of updates 
exceeds a threshold  then its associated 
candidate is considered as “Confirmed”.
If no member of 30 t satisfies  , then the 

 in frame 30 t is considered as lost and its 

estimation is accomplished using its history 
temporarily. Moreover, if the loosed frames 
for a candidate are more than a threshold, then 
it is considered as “False” and it will be 
rejected.
Those members of 30 t who hasn’t been 

associated to any  , are fed to pruning 

algorithm II.2, to find new candidates. 
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Finally, combination of (2) and (19) with 
confirming procedure leads to equation (21) 
which determines the state of each pixel of the 
main video in a sample time such as 10 t .
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Note that concluding “Do not reject 0H ” 

doesn’t necessarily mean that 0H is true, it 

only shows that there is no sufficient evidence 
against 0H in favor of 1H [22] and therefore 

the pixel cannot be considered as a part of 
biological particle in current time slot.
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Figure 1. Pruning procedure.

3. Results
The proposed algorithm was applied to real data. 
The data set was various videos which had been 
obtained from microscopy of live Listeria
activity. Listeria is a kind of Gram-positive
bacilli which exists in contaminated meat and 
vegetables and affects the human immune 
system which leads to the fatal disease,

"Listeriosis" [23]. The videos were captured by 
an Orca ER Digital CCD camera mounted on a 
Nikon invert microscope using a 40× zoom lens. 
Variations in optical filtering, shutter time, and 
light exposure led to variations of the captured 
videos in contrast, intensity, and apparent 
proximity.
The proposed method was implemented using 
Matlab 2009. Additionally, algorithm of 
morphological detection (MD) of biological 
particles [24] was implemented to be compared 
with the proposed algorithm. Tests were carried 
out  on different scenarios which in one of them 
the test specimens contained low density 
particles, so simple motions were seen in 
captured videos and in another one specimens 
contained high density particles, so complex and 
close motions appeared in captured videos. 
Specifications of both scenarios have been 
shown in Table 1. The captured videos were first 
processed using manual characterization to 
obtain a ground-truth characterization to 
compare the automatic methods with. Then, 
characterized particles were obtained by 
applying the proposed and MD algorithms and
the performance of each algorithm was 
determined by comparing its results with manual 
characterization results.

3.1. First scenario    
In the first scenario, the captured video had been 
obtained from specimens which contained low 
density live Listeria particles ( mlCFU /10
1concentration) which had single motion 
trajectories. 
Figures (2) and (3) show obtained results in four 
different frames (15, 20, 25, and 30) of this 
scenario utilizing the proposed and MD 
methods, respectively. For instance, in Figure 2-
a result of frame 15 shows that the proposed 
method has extracted 5 particles from 5 original 
particles (marked as 1-5) with no false particle. 
Moreover, Figure 2-b shows that the proposed 
method has extracted all of 5 particles of frame 
15 with no false particle again in frame 20. 
However, Figure 3 shows that MD method has 
had weaker results than the proposed method.

                                                
1 Colony Forming Unit Per milliliter
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Table 1. Specifications of test scenarios. 

ValueSpecificationValueSpecification

Scenario1:
117

Number of captured frames
Min: 12 pixels

sizes of particles
Scenario 2:

150
Max: 70 pixels

Scenario1:
0.2-2.5 pixels per frame *

Min and Max speed of particles240*320 pixelsFrame size 
Scenario 2:

0.5-6 pixels per frame

18%Average contrast25 fpsVideo frame rate

*Note that 0.2 pixel per frame means that the movement has been averagely one pixel per 5 frames 

It is obvious in Figure 3-a, that MD method
has extracted two particles correctly 
(marked as 1 and 5) on the same frame as 
Figure 2-a, so it has missed 3 original 
particles. Moreover, it has extracted 4 false 
particles (marked as 2, 3, 4, and 6). The 
results which have been shown in Figure 3-
b indicates that in frame 20, MD has 
extracted 3 particles correctly (marked as 1, 
5, and 7) and has missed 2 particles. 
Moreover, MD has extracted 4 false 
particles (marked as 2, 3, 4, and 6). Similar 
results which have been obtained from 
frames 25 and 30 of Figures 2 and 3 still 
show the better performance of the 
proposed method compared with MD.

3.2. Second scenario 
In this scenario, the video stream was 
captured from specimens containing high 
density ( mlCFU /10 concentration) and
high speed live Listeria particles. These 
particles had complex trajectories which 
caused some limitations in video such as: 
dividing particles, exiting of some particles 
from the region of interest, particle
apoptosis, and particles with close 
distances.
Figures 4 and 5 show results which have 
been obtained in four different frames (15, 
20, 25, and 30) of this scenario utilizing the 
proposed and MD methods, respectively.
For example, in Figure 4-a, result of frame 
15 shows that the proposed method has 

extracted 16 particles from 17 original 
particles (only one missed particle) with 
two false particles (marked as 2 and 11). 
Moreover, in Figure 4-b, result from frame 
20 shows that the proposed method has 
extracted all extracted particles of frame 15
with the same labels. Moreover, it has 
again extracted two false particles. 
In the same scenario situation, MD method 
has still had weaker results than the 
proposed method. This fact has been shown 
in Figure 5. In frame 15 (e.g., 5-a), it is 
obvious that MD method has extracted 13
particles correctly (4 missed original 
particles) and 6 false particles (marked as 3, 
4, 7, 8, 10, and 12). Moreover, result of 
frame 20 (e.g., 5-b) shows that MD has 
extracted 14 particles correctly (3 missed 
original particles) and 4 false particles 
(marked as 8, 10, 12, and 14). Similar 
results which have been obtained from 
frames 25 and 30 still show the better 
performance of the proposed method 
compared with MD. 

4. Discussion
Real data which had been obtained from 
microscopy of live Listeria activity were 
analyzed. The proposed and MD methods 
were applied to the data and the results 
were compared with manual results using
the following parameters: 
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Figure 2. Extracted particles using our algorithm in frames (a) 15, (b) 20, (c) 25, and (d) 30 for test 
specimen containing low density- simple movement live Listeria particles (first scenario).

Figure 3. Extracted particles using MD algorithm in frames (a) 15, (b) 20, (c) 25, and (d) 30 for a test 
specimen containing low density- simple movement live Listeria particles (first scenario). 
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Figure 4. Extracted particles using our algorithm in frames (a) 15, (b) 20, (c) 25, and (d) 30 for a 
specimen containing high density- complex movement live Listeria particles (second scenario).

Figure 5. Extracted particles using MD algorithm in frames (a) 15, (b) 20, (c) 25, and (d) 30 for a 
specimen containing high density-complex movement live Listeria particles (second scenario).
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4.1. Detection Rate 
To estimate this parameter in each frame,
the number of missed particles was
determined, then the average for all the 
frames was calculated and finally it was
divided to the total number of particles as:

100*)1( 1

particlesofnumberframestotal

kframeinparticlesMissed

RateDetection
framestotal

k









    (22)

4.2. False Detection Rate
This parameter was calculated similar to 
equation (22) as:

100*1

particlesofnumberframestotal

kframeinparticlesfalse

RateDetectionFalse
framestotal

k








          (23)

Using the mentioned parameters, ROC 
curves were obtained for both proposed 
and MD methods which show changes of 
detection rate versus false detection rate. 
ROC curves obtained in the first and 
second scenarios have been shown in 
Figures 6 and 7, respectively. These 
figures show clearly the superiority of the 
proposed method compared with MD in 
both of scenarios. 
For instance, as shown in Figure 6, the 
proposed and MD algorithms achieved 
detection rates of 95% and 65% at the false 
detection rates of 2% and 44% in the first 
scenario. In the same manner, the obtained 
ROC curves for the second scenario 
(Figure 7) show detection rates of 91% and 
55% at false detection rates of 14% and 
45% for the proposed and MD algorithms,
respectively.

Figure 6. ROC curves obtained in the first scenario 
for proposed (solid-line) and MD (dashed-line) 
algorithms.

Figure 7. ROC curves obtained in the second 
scenario for proposed (solid-line) and MD (dashed-
line) algorithms.

Based on these results, it can be concluded 
that typically for each arbitrary particle, its 
detection probability is considerably (30%, 
36% in first and second scenarios,
respectively) higher than MD method by 
using proposed algorithm. Moreover, false 
detected particles in the proposed method 
are typically 42% and 31% less than MD 
in the two scenarios. 
4.3. Track categories
In captured videos, all the live Listeria
particles may not be tracked because of 
reasons which were explained in part 3.2. 
Based on those limitations, constructed 
trajectories of particle movements were 
divided into three categories: “Full 
Trajectory” for the particle correctly 
tracked along the entire video, “Partial
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Trajectory” for the particle correctly 
tracked only for a portion of the video, and 
“Non-Trajectory” for the particle
incorrectly tracked. 
Table 2 shows superiority of the proposed 
algorithm compared with MD in tracking 
as well as its superiority in detection. It has 
been shown that the proposed algorithm 
extracted full trajectories 31% and 38%
better than MD in first and second 
scenarios, respectively. Moreover, it can 
be shown that the proposed algorithm has 
not extracted any non-trajectory in the first 
scenario whereas the percentage of 
extracted non-trajectories by MD has been 
27% in this scenario. Also, in the second 
scenario MD has extracted non-trajectories 
18% more than the proposed method.
The superior performance of our proposed 
algorithm is due to its different treatment 
of random changes in each frame. 
Specifically, it should be noted that the 
contents of the captured video from 
biological particles change randomly 
during successive frames as mentioned 
before. Existing methods characterize 
particles using conventional spatial 
processing only. On the contrary, our 
method treats the random changes of
pixels of captured frames as a stochastic 
process. Firstly, it extracts candidates for 
biological particles by exploiting the 
aforementioned stochastic models and then 
confirms them utilizing a combination of 
graph theory and spatial processing. Such 
stochastic modeling which is more 
compatible with the nature of these images 
can select more correct particles and reject 
more false particles compared with
existing alternatives which do not consider 
such stochastic nature and models. This 
intuition is further corroborated by the 
obtained results mentioned before.
Finally, it is notable that the performances 
of both algorithms have been decreased in 
the second scenario compared with their 
performances in the first scenario. Table 2
shows that in the second scenario, full 
trajectories have been decreased 6% and 

13% by using the proposed and MD 
methods, respectively.

Table 2. Comparing performance of algorithms in 
different scenarios.

Parameter
First

Scenario
Second

Scenario
Our MD Our MD

D
et

ec
t Detection Rate 95% 65% 91% 55%

False-Detection-
Rate

2% 44% 14% 45%

T
ra

ck

Full Trajectory 100% 69% 94% 56%
Partial 

Trajectory
0% 16% 6% 15%

None Trajectory 0% 27% 12% 30%

In the same manner, non-trajectories of the 
proposed and MD methods increased 12%
and 3% compared with their values in the 
first scenario. This performance degradation
may be explained by the presence of higher 
concentration of live Listeria particles and 
their more complex movement in the second 
scenario compared with the first scenario.

5. Conclusion
In this paper, a new method was 
introduced for characterization of live 
Listeria particles in microscopic videos. In 
the proposed method, firstly, some 
probable particles were indicated as 
“candidates” by modeling their history as a 
stochastic process. Such a stochastic 
modeling makes the proposed algorithm 
different from existing methods and allows 
us to consider changes of captured video 
during successive frames. In the second 
step, the graph theory was utilized to reject 
some candidates that had not constructed a 
meaningful string in successive frames. In 
the final step, biological particles were 
characterized from those remaining 
candidates who had made motility
trajectories for a required period of time. 
To evaluate the performance of the 
proposed algorithm, two scenarios were 
carried out based on real videos containing 
live Listeria particles. The first scenario 
belonged to specimens with low density of 
particles, so simple motions would appear 
in captured videos. The second scenario 



Seyed Vahab Shojaedini

                                   Iran J Med Phys, Vol. 9, No. 3, Summer 2012214

dealt with specimens with high density of 
particles, so complex and close motions 
were recorded in captured videos. In both 
scenarios, the performance of the proposed 
algorithm was compared with MD method 
using their detection rate, false detection 
rate, full trajectories, partial trajectories, 
and non-trajectories. Results showed 
higher performance of the proposed 
algorithm in characterization of biological 
particles compared with MD method. By 
exploiting the obtained ROC curves, it was 
shown that in the first scenario, the 
proposed algorithm has characterized 
typically 95% of particles and 100% of 
full-trajectories. The above results have 
been 30% and 31% better than those which
had been obtained using MD. Moreover, 
for the proposed algorithm, false detected 
particles and non-trajectories have been 
42% and 27% better than those obtained 
by the MD algorithm. In the second 
scenario, biological particles had higher 
concentrations and their movements were 
more complex which led to degradation of 
results compared with the former scenario. 

However, it was shown that in this 
scenario the proposed method 
characterized particles 36% and 38%
better than MD using detection rate and 
full-trajectory parameters. Furthermore, 
for the proposed algorithm, the rate of the 
false detected particles and non-trajectories 
have been 31% and 18% better than MD. 
Therefore, it shows that better 
characterization of particles and 
trajectories by proposed algorithm not only 
has not led to the extraction of more false 
particles and non-trajectories, but also has 
decreased their erroneous values.
Consequently, it can be concluded that the
proposed method may be used as a suitable 
choice for characterization of biological 
particles and their motility trajectories.
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