
 

 

 

 

 

 
  
 

  

Iranian Journal of Medical Physics 
 

ijmp.mums.ac.ir 

Algorithm for Recognition of Left Atrial Appendage Boundaries 

in Echocardiographic Images 

Hossein Ghayoumi Zadeh 1, 2*, Ali Fayazi 1, 2, Narbeh Melikian 3, Mark J Monaghan 4, Mehdi Eskandari 5  

1. Non-communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran 

2. Department of Electrical Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran 

3. MD, MRCP, King’s College Hospital, London, United Kingdom 

4. FBSE, FACC, FESC, King’s College Hospital, London, United Kingdom 

5. MD, FRACP, King’s College Hospital, London, United Kingdom 

 

A R T I C L E  I N F O  A B S T R A C T 

Article type: 
Original Paper 

  

Introduction: The left atrial appendage )LAA( occlusion using a purpose-built device is a growing 
procedure. This study aimed to develop a computer-aided diagnostic system for the recognition of the LAA 
in echocardiographic images. 
Material and Methods: The three-dimensional (3D) echocardiographic images of the LAA of 26 patients 
successfully treated with an LAA occluder were used in this study. A total of 208 3D derived two-
dimensional images in the axial plane were derived from each 3D dataset. Then, 562 images in which the 
LAA boundaries were highly recognizable were selected for this study. The proposed convolutional neural 
network (CNN) in this study was based on open-source object identification and classification platform 
compiled under the You Only Look Once algorithm. Finally, 419 and 143 images were used for training and 
testing the algorithm, respectively.  
Results: Algorithm performance on the identification of the LAA region on a set of 143 images was 
compared to that reported for the traced regions on the same images by an expert in echocardiography using 
an intersection over the union (IOU) algorithm. The algorithm was able to correctly identify the LAA region 
in all 143 examined images with an average IOU of 90.7%.   
Conclusion: The proposed image-based CNN algorithm in this study showed high accuracy in the 
recognition of the LAA boundaries in the echocardiographic images. The method can be used in the 
development of algorithms for the automated analysis of the area of the LAA used for device sizing and 
procedural planning in the LAA occlusion procedures.  
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Introduction 
Atrial fibrillation (AF) is the most prevalent 

cardiac rhythm disturbance. The number of 
individuals suffering from AF worldwide was about 
33.5 million in 2010, with 20.9 and 12.6 million men 
and women, respectively. The incidence and 
prevalence rates of AF are even higher in developed 
countries [1]. However, the growth rate of AF varies 
among different studies, the incidence of AF was 
estimated to be doubled in the United Stated by 2030 
[2]. The AF can result in a disabling stroke through 
clot formation primarily in the left atrial appendage 
(LAA) and accounts for approximately 20% of the 
ischemic strokes [3].   

The standard treatment for the patients with AF 
and at risk of stroke is oral anticoagulation agents. 
However, anticoagulation therapy is associated with 
the risk of bleeding and contraindicated in the 
subjects with a history of major bleeding. An 
alternative treatment in this group of patients is the 
occlusion of the LAA using a purpose-built device to 

prevent the embolization of the clot to the 
cerebrovascular system [4]. There are currently two 
main LAA occlusion devices, namely WatchmanTM and 
Amplatzer AmuletTM [5].  

The LAA anatomy varies significantly, with an 
often-elliptical ostium and neck. A careful assessment 
of the anatomy of the LAA is pivotal in planning for the 
LAA closure. A crucial step in the planning is 
determining the size of the device derived from the 
analysis of a plane below the ostium of the LAA, as the 
so-called landing zone. Transesophageal 
echocardiography (TEE) is the imaging modality of 
choice in many centers for procedural planning and 
device sizing. Conventionally, the landing zone is 
measured in multiple two-dimensional (2D) imaging 
angles; however, owing to the inherent limitations of 
2D echocardiography, the chosen plane is not 
necessarily reflective of the largest and shortest 
dimensions of the landing zone. Accordingly, there has 
been a growing interest in the application of three-
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dimensional (3D) imaging modalities, namely 3D TEE 
or multislice computed tomography (MSCT), in the 
LAA occlusion planning [6,7].  

In case of using 3D TEE, a zoomed 3D dataset of 
the entire LAA and preferably adjacent anatomical 
landmarks, such as mitral and pulmonary valves, are 
acquired. By the application of the multiplanar 
reconstruction technique making it possible to derive 
2D images from the 3D dataset, the landing zone is 
determined as a line drawn at the level of the left 
circumflex artery to 10-15 mm below the ridge in 
between pulmonary vein and LAA [7]. Perimeter, 
shortest, and longest dimensions of the landing zone is 
then manually measured (Figure 1). These 
measurements will be taken into account for device 
sizing based on manufacturer recommendations.  

However, the manual identification and analysis of 
the LAA landing zone is time-consuming and subject 
to interobserver and intraobserver variability and 
might lead to device resizing during the procedure 
which adds to the cost of an already expensive 
procedure. There has been a growing interest in 
performing imaging studies to improve the process of 
image interpretation using automated models. 
Nevertheless, there is a paucity of the studies in the 
field of echocardiographic imaging of the LAA in this 
regard.  

For the development of an automated model, the 
first step is the process of segmentation isolating the 
boundaries of an image in the form of multiple 
segments based on its properties, including color, 

intensity, and texture of the image. The crucial factors 
in image segmentation are the dynamic changes of 
colors, shapes, textures, and scales of images [8]. In 
general, image segmentation techniques fall into one 
of the two approaches, namely discontinuities and 
similarities [9]. In the former approach, the 
subdivision of images is carried out based on an 
abrupt change in the intensity of the grey levels of an 
image; however, in the latter, similarities in the 
intensity of the grey levels are used to partition an 
image into the similar regions according to a set of 
predefined criteria. Edge detection algorithms are the 
examples of discontinuities approach, and the 
algorithms, such as thresholding, region growing, 
region splitting, and merging are based on the 
similarities approach.  

A limited number of studies have been carried out 
on LAA segmentation techniques only one of which is 
based on echocardiographic images. A semi-automated 
algorithm was presented [10] for the LAA segmentation 
using a region growing algorithm. In another study 
[11], a fully automatic LAA segmentation method was 
proposed by an actor-critic reinforcement learning 
agent. According to the literature [12], a technique 
based on the fusion of temporal-spatial information 
was developed for the LAA segmentation and 
quantitative assisted diagnosis of AF. Wang et al. [13] 
proposed a semi-automated LAA segmentation 
technique based on MSCT images that involves four 
manually selected seed points to obtain the region of 
interest or bounding box for the LAA. 

 
 

 
 
Figure 1. Illustration of multiplanar reconstruction of zoomed three-dimensional echo dataset; green, red, and blue boxes/lines corresponding 
to sagittal, coronal, and axial (transverse) views; adjustment of blue plane at level of landing zone in sagittal and coronal views (i.e., upper green 
and red boxes) after alignment of green and red planes; illustration of landing zone in axial (i.e., transverse) plane (i.e., blue box, yellow circle); 
performing relevant measurements on landing zone 
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Recently, artificial intelligence (AI) has been used 
to improve the process of image acquisition and 
interpretation for the improvement of patient 
outcomes. The application of learning machines, a 
subfield of AI, in echocardiography has become an 
attractive tool to teach echocardiography machines to 
analyze a vast number of data points using complex 
computation and statistical algorithms.  

However, to the best of our knowledge, there have 
been a limited number of studies carried out on the 
use of machine learning in the LAA segmentation 
arena. Based on the evidence [15], the combination of 
fully CNNs and modified 3D conditional random fields 
was used as a robust method utilized to perform the 
automatic segmentation of the LAA from MSCT data. 
With this background in mind, the present study 
proposed an AI-based algorithm for the LAA 
segmentation and image recognition based on 3D 
derived 2D echocardiographic images.  

 

Materials and Methods 
Dataset 
The data used in this study were the 3D 
echocardiographic images of 26 unselected patients who 
successfully underwent the LAA closure at King’s 
College Hospital London, United Kingdom. The data 
were prepared according to the standards of the 
European General Data Protection Regulation, ethical 
standards of the Institutional and/or National Research 
Committee (Approval ID in Iran:  
IR.RUMS.REC.1398.041), as well as 1964 Helsinki 
Declaration and its later amendments or comparable 
ethical standards. In addition, the data were completely 
anonymous and untraceable. The images were obtained 
by an Epiq 7XT (Philips company, Best, Netherland) 
echocardiography machine using X7-2t or X8-2t probes 
(Philips, Best, and Netherland) in a zoomed 3D mode.  

Preprocessing 
The first and only preprocessing step in this method was 
to derive 2D axial images from the 3D zoomed dataset. 
As illustrated in Figure 1, the landing zone lies in the 
axial axis of the LAA. For this purpose, an open-source 
software platform 3D slicer (Harvard University, 
version 4.11, United States) was used that returns 208 
3D derived 2D axial images with the dimensions of 
112×128 pixels from a zoomed 3D dataset of the LAA. 
In the next step, the axial images (i.e., 5408 slices from 
26 cases) were examined by an expert in 
echocardiography, and the LAA border (i.e., the region 
of interest for the training of the neural network) was 
traced where feasible.  
A total of 562 highly recognizable and traceable axial 
images were selected out of which 419 and 143 images 
were used for training the neural network and testing the 
model, respectively. An example of a patient’s slices is 
shown in Figure 2. As illustrated in the figure, in some 
slices (n=181, 200), the area of the LAA is not properly 
distinguishable. Therefore, such images were not 
included in the training process. 

 

Segmentation 
The convolutional neural network (CNN) algorithm for 
detecting and tracking the LAA presented in this study 
was based on the identification and classification 
platform of open-source object compiled under the You 
Only Look Once (YOLO) algorithm [16]. An image-
based CNN was used over a conventional feature-based 
algorithm. In a featured-based system, the number of 
determined features, as well as their impact on the 
diagnostic power of the system, is of paramount 
importance. Some features are implicitly correlated with 
each other and can create unnecessary complexity in 
problem-solving (i.e., overfitting).  

 

n=35 n=61 n=87

n=106 n=181 n=200
 

Figure 2. Example of left atrial appendage axial images derived from zoomed three-dimensional echo datasets; no identification of left atrial 
appendage boundaries in image numbers 181 and 200 leading to exclusion of these images for training of neural network 
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Figure 3. Proposed computer-aided detection and diagnosis system for detecting and tracking left atrial appendage using You Only Look Once 
model; convolutional neural network, including 24 sets of convolutional layers and 2 fully connected layers to identify left atrial appendage region, 
as structure of proposed model  

 
In feature-driven neural networks, it is evident that any 
deficiencies or redundancies in feature extraction or 
neural network structure design greatly affect the 
performance of the nervous system in terms of the 
accuracy and sensitivity of the intelligent system 
performance.  

The segmentation technique used in this study is 
based on the YOLO model. The YOLO-based 
computer-aided detection (CAD) and diagnosis system 
has many advantages over other conventional CNNs. 
For instance, in many CNNs, the potential bounding 
boxes in images are suggested by the regional proposal 
methods. This is pursued by the bounding boxes 
classification and postprocessing applied to refine the 
bounding boxes and eliminate the duplicate detections. 
Finally, all bounding boxes are rescored and reevaluated 
based on other objects in the scene. 

One problem with the above-mentioned methods is 
that they are used in various locations and scales. It is 
considered that the high scoring regions are detected 
from an image and repeated to reach a certain detection 
threshold. Although these algorithms are precise and 
used in many application programs, their computations 
are expensive and almost impossible to be optimized or 
parallelized which makes them unattractive for the LAA 
region separation. In addition, in the YOLO-base 
method, a single neural network is only utilized to split 
an image into regions and predict bounding 
boxes and probabilities for each region which is the 
main advantage of the YOLO-based method. 

The proposed YOLO-based CAD system is 
illustrated in Figure 3. The YOLO network structure is 
very simple. As depicted in Figure 3, the input resized 
image is received only by a single 
convolutional network. Multiple bounding boxes and 
class probabilities for those boxes are then 
simultaneously predicted by the single 
convolutional network. The YOLO trains on full images 
and directly optimizes detection performance. 

It includes a CNN with 24 convolutional layers for 
feature extraction followed by 2 fully connected layers 
to predict the probability and coordinates of the objects. 
In this study, the coordinates of the objects were the 
LAA regions.Object-detection in the YOLO-based 
method was accomplished as a tensor-regression 
problem in which the process started by importing an 
image into the network. All images were initially resized 
to 128×128 before putting them into the network. A 
cubic grid sized (S×S) was then superimposed over the 
image, effectively dividing it into the number of cells 
(n) (Figure 4a). It should be noted that the value of S 
should be selected so that it is divisible by image size 
(128×128). If the S size is set to large, the segmented 
region will be combined with other regions. Moreover, 
if it is set to small, the convolution calculation process 
will be much longer. Bounding boxes (B) and 
confidence scores for those boxes were predicted by 
each grid cell (Figure 4b). 
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(A)
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(C)

(D)

 
Figure 4. Captured image from a video slide of echocardiographic (A) divided into cells using an equally sized grid (B, C) to uncover key features 
(D); example of network designed with grid size (S=7) and number of cells (n=49) 

 
The following information can be introduced for 

each bounding box:  
the box’s center coordinates x and y of the bounding 

box which represent the center of the bounding 
box relative to the bounds of the grid cell as shown in 
Figure 4c  

the width (w) and height (h) of the bounding box 
predicted relative to the whole image  

the probability of the bounding box composed of the 
object of interest as a conditional class probability: Pr 
(object)  

The ultimate output layer of the network was 
reshaped to form an S×S× (B×5 +C) tensor, where C 
denotes the number of classes, and B is the number of 
hypothetical object bounding boxes. Nonmaximal 
suppression method was applied to remove duplicate 
detections. A loss function should be used subsequently. 
This function changed the weights of the grid so that the 
boundary selected by the neural network was more 
consistent with the boundary labeled by the specialist 
physician resulting in lower errors and more reliability. 
During the training stage, the network loss function was 
used as it follows [17]: 

𝜆𝑐𝑜𝑜𝑟 ∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗𝐵

𝑗=0
𝑆2

𝑖=0 (√𝑤𝑖 −√𝑤𝑖́ )
2
+ (√ℎ𝑖 − √ℎ𝑖́ )

2

       (1) 

 
where λcoor is the weight assigned to the loss over the 

coordinates; wi is the width of the bounding box; hi is 
the height of the bounding box, and 1ij

obj is the function 
that counts if the jth bounding box predictor in cell i is 
responsible for the prediction of the object. As described 
in the preceding text, the coordinates w and h 
correspond to the width and height of the box, 

respectively. At each run, the network output was 
checked by the loss function criterion. If the separated 
region was not similar to the desired region, the values 
of the convolution filters were changed to minimize the 
error criterion, and the values of w and h were most 
consistent with the region of interest.  

In this paper, a 24 convolutional layers YOLO 
network was used for the detection task followed by 2 
fully connected layers. This network structure 
impressively reduced computational time but at the 
expense of marginally decreasing the classification 
accuracy of object detection. Table 1 tabulates the full 
26-layer network structure. The details of network 
architecture and network training process are described 
in the literature [17].  
Algorithm performance on identifying the LAA region 
on the set of 143 images was compared to that reported 
for the traced regions on the same images by an expert 
in echocardiography using the intersection over the 
union (IOU) ratio that assessed the similarity between 
the grand truth and automatic segmentation. The ratio is 
calculated as it follows [17]: 

 =IOU 

| |

| |

seg gt

seg gt

V V

V V




                                                   (2) 

 
where Vgt and Vseg denote the volume of the ground 

truth and automatic segmentation, respectively. As 
much as the two ratios are closer to 1, the automatic 
results are closer to the manual.  
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Table 1. Configuration of You Only Look Once deep neural network structure to track left atrial appendage 
 

Total Learnables Learnable Activations Type Name 

0 - 128×128×1 Image input 
Input 
128×128×1 images 

160 
Weight  3×3×1×16 
Bias        1×1×16 

128×128×16 Convolution 
Conv_1 
16  3×3×1 convolutions 

32 
Offset     1×1×16 
Scale      1×1×16 

128×128×16 Batch normalization 
BN1 
(16 channels) 

0 - 128×128×16 Relu Relu_1 

0 - 64×64×32 Max pooling 
MaxPool1 
2×2 

4640 
Weight  3×3×16×32 
Bias        1×1×32 

64×64×32 Convolution 
Conv_2 
32  3×3×16 convolutions 

64 
Offset     1×1×32 
Scale      1×1×32 

64×64×32 Batch normalization 
BN2 
(32 channels) 

0 - 64×64×32 Relu Relu_2 

0 - 32×32×32 Max Pooling 
MaxPool2 
2×2 

18496 
Weight  3×3×32×64 
Bias        1×1×64 

32×32×64 Convolution 
Conv_3 
64  3×3×32 convolutions 

128 
Offset     1×1×64 
Scale      1×1×64 

32×32×64 Batch normalization 
BN3 
(64 channels) 

0 - 32×32×64 Relu Relu_3 

0 - 16×16×128 Max pooling 
MaxPool3 
2×2 

73856 
Weight  3×3×64×128 
Bias        1×1×128 

16×16×128 Convolution 
Conv_4 
128  3×3×64 convolutions 

256 
Offset     1×1×128 
Scale      1×1×128 

16×16×128 Batch normalization 
BN4 
(128 channels) 

0 - 16×16×128 Relu Relu_4 

147584 
Weight 3×3×128×128 
Bias        1×1×128 

16×16×128 Convolution 
Yolov2Conv1 
128  3×3×128 convolutions 

256 
Offset     1×1×128 
Scale      1×1×128 

16×16×128 Batch normalization 
Yolov2Batch1 
(128 channels) 

0 - 16×16×128 Relu 
Yolov2Relu1 
Relu 

147584 
Weight 3×3×128×128 
Bias        1×1×128 

16×16×128 Convolution 
Yolov2Conv2 
128  3×3×128 convolutions 

256 
Offset     1×1×128 
Scale      1×1×128 

16×16×128 Batch normalization 
Yolov2Batch2 
(128 channels) 

0 - 16×16×128 Relu 
Yolov2Relu2 
Relu 

3096 
Weight 1×1×128×24 
Bias        1×1×24 

16×16×24 Convolution 
Yolov2ClassConv 
24  1×1×128 convolutions 

0 - 16×16×24 Yolo* v2 transform layer 
Yolov2Transform 
Yolo v2 Transform layer 
with 4 anchors 

0 - - 
Yolo v2 output 
 

Yolov2Outputlayer 
Yolo v2 output with 4 
anchors 

 
Yolo: You Only Look Once 

 

Results 
The best results were obtained when mini-batch size, 

epoch, initial learn rate, learning rate, and iteration 

number were 8, 50, 0.001, 0.0001, and 4300, 

respectively. The remaining 143 images were used for 

testing CNN recognition accuracy. Two of the various 

scenarios of the obtained results are shown in Figure 5. 

Notably in all scenarios, the region of interest (i.e., the 

LAA border) was correctly detected.  
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(b) (a) 

 

Figure 5. Types of obtained results from proposed network; (a) correct identification of left atrial appendage region by network; (b) consideration of 

two regions as left atrial appendage region by network  

  

 
 

Figure 6. Levels of intersection over the union (IOU) in identification of left atrial appendage by proposed method 

 

Figure 6 depicts the IOU of the 143 images. Notably, 

the algorithm was able to correctly identify the LAA 

region in all 143 examined images with an average IOU 

of 90.7%.   

An example of the segmented images is illustrated in 

Figure 7. As it can be observed, in most images, the 

deep neural network was able to identify the LAA 

region with a high rate of probability. In cases where the 

region has not been fully assigned or dropped in the 

image, this identification has been made less accurately, 

as illustrated in Figure 7c. 
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(a) (b)

(c) (d)

 
Figure 7. Example of segmented images of left atrial appendage region by You Only Look Once algorithm  

 

Discussion 
In this study, a YOLO-based CAD algorithm was 

proposed for tracking and recognizing the LAA region 
on 3D derived 2D axial images that can be used for the 
development of a model for the automated recognition 
and analysis of the LAA landing zone. An essential step 
in planning the LAA closure is the manual identification 
of the LAA landing zone and measurement of its longest 
and shortest dimensions and perimeter (Figure 1). The 
application of learning machines-based algorithms in 
echocardiography is in its infancy. Within different 
subtypes of machine learning, the application of CNN in 
echocardiography has been only reported in the 
recognition of views obtained by echocardiography and 
quantification of wall motion abnormalities [14].  

The CNN appears to be an attractive approach for 
the development of algorithms for automated tracking 
and recognizing the LAA landing zone from 3D derived 
2D images. There are several localized CNNs, such as 
RCNN(Region Based Convolutional Neural Networks), 
RPN(Region Proposal Network), Fast R-CNN, and 
YOLO, that can be used for this purpose [18]. Fast R-
CNN offers a classification at the rate of one frame per 2 

sec that is 25 times faster than the R-CNN approach 
[19]. Simonyan and Zisserman proposed very deep 
convolution networks of up to 19 weight layers. The 
application of the proposed 16-weight layer by 
Simonyan and Zisserman in Faster R-CNN improved 
the rate to 7 frames/sec, outperforming the R-CNN by 
200 times.  

However, the YOLO based algorithms used in the 
current study remain the fastest algorithms for the 
recognition of machine vision. The advantage of the 
image-based intelligent structure used in the present 
study is no requirement of manual feature extraction as 
it is designed to learn and identify the intended purpose 
and automatically extracting the required features. The 
RCNN and Fast R-CNN algorithms were also trained 
with a similar set of 526 images and tested with the 143 
images. The average rates of IOU were 93.97% and 
84.52% for RCNN and Fast R-CNN, respectively. The 
LAA border detection in the 143 images was successful 
in only 36 and 57 images by the RCNN and Fast-
RCNN, respectively (Figure 8).  
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Figure 8. Comparison of intersection over the union (IOU) levels in identification of left atrial appendage by (Region Based Convolutional Neural 
Networks) RCNN and Fast R-CNN neural networks 

 
Although the majority of previous studies on the 

identification of the LAA region have been carried out 
based on different CT images [12, 20, 21] and also the 
quality of CT images is much higher than 
echocardiographic images, The advantage of the 
proposed method is that it is able to perform well in the 
field of intelligent segmentation. Another contribution 
of the present study was the use of 2D images for 
segmentation. The vast majority of previous studies 
have been conducted using 3D images with their 
difficulties. 

 

Conclusion 
In this study, an image-based CNN algorithm was 

developed for the detection of the LAA boundary from 
3D derived 2D echocardiographic images. This 
potentially could help develop an algorithm for the 
automated detection and analysis of the LAA landing 
zone for planning and device sizing of the LAA 
occlusion.  
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