Creep behavior of Biodegradable Triple-component Nanocomposites Based on PLA/PCL/bioactive Glass for ACL Interference Screws | ||
The Archives of Bone and Joint Surgery | ||
مقاله 9، دوره 7، شماره 6، بهمن 2019، صفحه 531-537 اصل مقاله (1.07 M) | ||
نوع مقاله: RESEARCH PAPER | ||
شناسه دیجیتال (DOI): 10.22038/abjs.2019.30582.1796 | ||
نویسندگان | ||
Javad Esmaeilzadeh* 1؛ Saeed Hesaraki2؛ Mohammad H. Ebrahimzadeh3؛ Golam Hosein Asghari4؛ Amir R. Kachoei3 | ||
1Orthopedic Research Center, Mashhad University of Medical Science, Mashhad, Iran Esfarayen University of Technology, Esfarayen, North Khorasan, Iran | ||
2Biomaterials Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Tehran, Iran | ||
3Orthopedic Research Center, Mashhad University of Medical Science, Mashhad, Iran | ||
4Central Laboratory Faculty, Iran Polymers and Petrochemical Institute, Tehran, Iran | ||
چکیده | ||
Background: Short-time creep behaviorfor aseries of biodegradable nanocomposites, which areused as implantable devices inthe body, is a crucial factor.The present study aimed to investigate the effect of bioactive glass nanoparticles (BGn) on creep and creep-recovery behaviors of polylactic acid/polycaprolactone (PLA/PCL) blends at different given loads and different applied temperatures. Methods: A series of biodegradable nanocomposites consisted of PLA/PCL blends (comprising 80 parts PLA and 20 parts PCL) with different amounts of modified-BGn (m-BGn) fillers were prepared using the evaporated solvent casting technique. Creep and creep-recovery behaviors of all specimens were studied at different valuable stressesof 3 and 6 MPa and different given temperatures of 25 and 37°C. Results: In all cases, m-BGn improved the creep resistance of the nanocomposites due to the retardation effect during the creep behaviors of the nanocomposite systems. The obtained results in terms of creep and creep-recovery properties determined that the nanocomposites of PLA/PCL/m-BGn can satisfy the required conditions of an appropriate anterior cruciate ligament reconstruction (ACL-R) screw. Conclusion: The obtained results confirmed that the BGn plays an impeding role in the movement of PLA/PCL chains leading to in increase the creep resistance. According to the results, it was determined that the nanocomposites of PLA/ PCL and m-BGn can satisfy the required circumstances of a proper ACL-R screw. Level of evidence: I | ||
کلیدواژهها | ||
ACL screws؛ Bioactive glass nanoparticles؛ Creep؛ Creep recovery؛ PLA/PCL blend | ||
مراجع | ||
1. Girgis FG, Marshall JL, Monajem A. The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis. ClinOrthopRelat Res. 1975; 106(1):216-31. 2. Balazs GC, Pavey GJ, Brelin AM, Pickett A, Keblish DJ, Rue JP. Risk of anterior cruciate ligament injury in athletes on synthetic playing surfaces: a systematic review. Am J Sports Med. 2015; 43(7):1798-804. 3. van Eck CF, Fu FH. Anatomic anterior cruciate ligament reconstruction using an individualized approach. AsiaPacific J Sports Med ArthroscRehabilitTechnol. 2014;1(1):19-25. 4. Georgiopoulos P, Kontou E. Τhe effect of wood‐fiber type on the thermomechanical performance of a biodegradable polymer matrix. J Appl Polymer Sci. 2015;132(27):42185. 5. Cyras VP, Martucci JF, Iannace S, Vazquez A. Influence of the fiber content and the processing conditions on the flexural creep behavior of sisal- PCL-starch composites. J Thermop Composite Mater. 2002;15(3):253-65. 6. Kim JS, Muliana AH. A combined viscoelastic– viscoplastic behavior of particle reinforced composites. Int J Solids Structures. 2010;47(5):580-94. 7. Esmaeilzadeh J, Hesaraki S, Hadavi SM, Esfandeh M, Ebrahimzadeh MH. Microstructure and mechanical properties of biodegradable poly (D/L) lactic acid/polycaprolactone blends processed from the solvent-evaporation technique. Mater SciEng C. 2017;71(1):807-19. 8. Esmaeilzadeh J, Hesaraki S, Hadavi SM, Ebrahimzadeh MH, Esfandeh M. Poly (D/L) lactide/polycaprolactone/ bioactive glasssnanocomposites materials for anterior cruciate ligament reconstruction screws: The effect of glass surface functionalization on mechanical properties and cell behaviors. Mater SciEng C. 2017;77(1):978-89. 9. Hanemann T, Szabó DV. Polymer-nanoparticle composites: from synthesis to modern applications. Materials. 2010;3(6):3468-517. 10. Pegoretti A, Kolarik J, Peroni C, Migliaresi C. Recycled poly (ethylene terephthalate)/layered silicate nanocomposites: morphology and tensile mechanical properties. Polymer. 2004;45(8):2751-9. 11. Pérez CJ, Alvarez VA, Vazquez A. Creep behaviour of layered silicate/starch–polycaprolactone blends nanocomposites. Mater SciEng A. 2008;480(1- 2):259-65. 12. Patricio T, Glória A, Bártolo P. Mechanical and biological behaviour of PCL and PCL/PLA scaffolds for tissue engineering applications. Chem Eng. 2013;32:1645-50. 13. Patrício T, Bártolo P. Thermal stability of PCL/PLA blends produced by physical blending process. Proc Eng. 2013;59(1):292-7. 14. Wu D, Wang J, Zhang M, Zhou W. Rheology of carbon nanotubes–filled poly (vinylidene fluoride) composites. IndustEngChem Res. 2012;51(19): 6705-13. 15. Wu DF, Sun YR, Wu L, Zhang M. Kinetic study on the melt compounding of polypropylene/multi-walled carbon nanotube composites. J PolymSci Part B Polym Phys. 2009;47(1):608-18. 16. Wu D, Wu L, Zhang M, Zhao Y. Viscoelasticity and thermal stability of polylactide composites with various functionalized carbon nanotubes. Polymer DegradStabil. 2008;93(8):1577-84. 17. Yao Z, Wu D, Chen C, Zhang M. Creep behavior of polyurethane nanocomposites with carbon nanotubes. Composites Part AApplSciManufactur. 2013;50(1):65-72. 18. Chłopek J, Kmita G, Rosół P. Lifetime prediction of polymer composite implants based on creep and fatigue tests. Ann Transplanta. 2004;9(1):26-9. | ||
آمار تعداد مشاهده مقاله: 529 تعداد دریافت فایل اصل مقاله: 424 |