The Role of Gene Therapy in Cartilage Repair | ||
The Archives of Bone and Joint Surgery | ||
مقاله 1، دوره 7، شماره 2، خرداد و تیر 2019، صفحه 79-90 اصل مقاله (849.38 K) | ||
نوع مقاله: CURRENT CONCEPTS REVIEW | ||
شناسه دیجیتال (DOI): 10.22038/abjs.2018.31615.1827 | ||
نویسندگان | ||
E. Carlos RODRIGUEZ-MERCHAN* 1؛ Leonard A. Valentino2 | ||
1Department of Orthopaedic Surgery and La Paz Research Institute (“Instituto de Investigación La Paz – IdiPaz”), “La Paz” University Hospital, Madrid, Spain | ||
2Rush University, Chicago, Illinois, USA | ||
چکیده | ||
The key principle of gene delivery to articulations by direct intra-articular injection is to release complementary DNA (cDNA)-encoding medical products that will lead to maintained, endogenous production of the gene products within the articulation. In fact, this has been accomplished for both in vivo and ex vivo gene delivery, using several vectors, genes, and cells in some animal models. Some clinical trials for rheumatoid arthritis and osteoarthritis (OA) using retrovirus vectors for ex vivo gene delivery and adeno-associated virus (AAV) for in vivo delivery have been reported. AAV is of special attention because, contrary to other viral vectors, it can enter deep within joint cartilage and transduce chondrocytes in situ. This quality is of special significance in OA, in which modifications in chondrocyte metabolism are believed to be crucial to the pathophysiology of the disease. The clinical effectiveness of TissueGene-C (TG-C), a cell and gene therapy for OA consisting of nontransformed and transduced chondrocytes (3:1) retrovirally transduced to overexpress TGF-β1 has been reported in patients with knee OA. The most common complications of TG-C were peripheral edema (9%), arthralgia (8%), articular swelling (6%), and injection site pain (5%). TG-C was associated with relevant ameliorations in function and pain. Gene therapy appears to be a viable method for the management of articular cartilage defects and OA. Level of evidence: III | ||
کلیدواژهها | ||
Cartilage؛ Gene therapy؛ Injury؛ Repair | ||
مراجع | ||
1. Rey-Rico A, Frisch J, Venkatesan JK, Schmitt G, Rial- Hermida I, Taboada P, et al. PEO-PPO-PEO carriers for rAAV-mediated transduction of human articular chondrocytes in vitro and in a human osteochondral defect model. ACS Appl Mater Interfaces. 2016; 8(32):20600-13. 2. Frisch J, Orth P, Venkatesan JK, Rey-Rico A, Schmitt G, Kohn D, et al. Genetic modification of human peripheral blood aspirates using recombinant adenoassociated viral vectors for articular cartilage repair with a focus on chondrogenic transforming growth factor-β gene delivery. Stem Cells Transl Med. 2017; 6(1):249-60. 3. Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartilage. 2002; 10(6):432-63. 4. Rodriguez-Merchan EC. The treatment of cartilage defects in the knee joint: Microfracture, mosaicplasty, and autologous chondrocyte implantation. Am J Orthop. 2012; 41(5):236-9. 5. Rodriguez-Merchan EC. Regeneration of articular cartilage of the knee. Rheumatol Int. 2013; 33(4):837-45. 6. Veronesi F, Giavaresi G, Tschon M, Borsari V, Nicoli Aldini N, Fini M, et al. Clinical use of bone marrow, bone marrow concentrate, and expanded bone marrow mesenchymal stem cells in cartilage disease. Stem Cells Dev. 2013; 22(2):181-92. 7. Madry H, Grun UW, Knutsen G. Cartilage repair and joint preservation: Medical and surgical treatment options. Dtsch Arztebl Int. 2011; 108(40):669-77. 8. Ribeil JA, Hacein-Bey-Abina S, Payen E, Magnani A, Semeraro M, Magrin E, et al. Gene therapy in a patient with sickle cell disease. N Engl J Med. 2017; 376(9):848-55. 9. George LA, Sullivan SK, Giermasz A, Rasko JE, Samelson-Jones BJ, Ducore J, et al. Hemophilia B gene therapy with a high-specific-activity factor IX variant. N Engl J Med. 2017; 377(23):2215-27. 10. Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino- Klapac LR, Prior TW, et al. Single-dose genereplacement therapy for spinal muscular atrophy. N Engl J Med. 2017; 377(18):1713-22. 11. Ondrésik M, Azevedo Maia FR, da Silva Morais A, Gertrudes AC, Dias Bacelar AH, Correia C, et al. Management of knee osteoarthritis. Current status and future trends. Biotechnol Bioeng. 2017; 114(4):717-39. 12. Weisleder N, Takizawa N, Lin P, Wang X, Cao C, Zhang Y, et al. Recombinant MG53 protein modulates therapeutic cell membrane repair in treatment of muscular dystrophy. Sci Transl Med. 2012; 4(139):139ra85. 13. Nagahara AH, Merrill DA, Coppola G, Tsukada S, Schroeder BE, Shaked GM, et al. Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nat Med. 2009; 15(3):331-7. 14. Bartus K, James ND, Didangelos A, Bosch KD, Verhaagen J, Yáñez-Muñoz RJ, et al. Large-scale chondroitin sulfate proteoglycan digestion with chondroitinase gene therapy leads to reduced pathology and modulates macrophage phenotype following spinal cord contusion injury. J Neurosci. 2014; 34(14):4822-36. 15. Kafienah W, Al-Fayez F, Hollande AP, Barker MD. Inhibition of cartilage degradation: a combined tissue engineering and gene therapy approach. Arthritis Rheum. 2003; 48(3):709-18. 16. Evans CH, Gouze JN, Gouze E, Robbins PD, Ghivizzani SC. Osteoarthritis gene therapy. Gene Ther. 2004; 11(4):379-89. 17. Nixon AJ, Saxer RA, Brower-Toland BD. Exogenous insulin-like growth factor-I stimulates an autoinductive IGF-I autocrine/paracrine response in chondrocytes. J Orthop Res. 2001; 19(1):26-32. 18. Shi S, Mercer S, Trippel SB. Effect of transfection strategy on growth factor overexpression by articular chondrocytes. J Orthop Res. 2010; 28(1):103-9. 19. Yu P, Wang X, Fu YX. Enhanced local delivery with reduced systemic toxicity: delivery, delivery, and delivery. Gene Ther. 2006; 13(15):1131-2. 20. Bellavia D, Veronesi F, Carina V, Costa V, Raimondi L, De Luca A, et al. Gene therapy for chondral and osteoachndral regeneration: is the future now? Cell Mol Life Sci. 2018; 75(4):649-67. 21. Shi S, Chan AG, Mercer S, Eckert GJ, Trippel SB. Endogenous versus exogenous growth factor regulation of articular chondrocytes. J Orthop Res. 2014; 32(1):54-60. 22. Li KC, Hu YC. Cartilage tissue engineering: recent advances and perspectives from gene regulation/ therapy. Adv Healthc Mater. 2015; 4(7):948-68. 23. Steinert AF, Weissenberger M, Kunz M, Gilbert F, Ghivizzani SC, Göbel S, et al. Indian hedgehog gene transfer is a chondrogenic inducer of human mesenchymal stem cells. Arthritis Res Ther. 2012; 14(4):R168. 24. Somoza RA, Wleter JF, Correa D, Kaplan AI. Chondrogenic differentiation of mesenchymal stem cells: challenges and unfulfilled expectations. Tissue Eng Part B Rev. 2014; 20(6):596-608. 25. Lu CH, Yeh TS, Yeh CL, Fang YH, Sung LY, Lin SY, et al. Regenerating cartilages by engineered ASCs: prolonged TGF-b3/BMP-6 expression improved articular cartilage formation and restored zonal structure. Mol Ther. 2014; 22(1):186-95. 26. Frank KM, Hogarth DK, Miller JL, Mandal S, Mease PJ, Samulski RJ, et al. Investigation of the cause of death in a gene therapy trial. N Engl J Med. 2009; 361(2):161-9. 27. Evans CH, Ghivizzani SC, Robbins PD. Gene delivery to joints by intra-articular injection. Hum Gene Ther. 2018; 29(1):2-14. 28. Ying J, Wang P, Zhang S, Xu T, Zhang L, Dong R, et al. Transforming growth factor-beta1 promotes articular cartilage repair through canonical Smad and Hippo pathways in bone mesenchymal stem cells. Life Sci. 2018; 192(1):84-90. 29. Madry H, Zurakowski D, Trippel SB. Overexpression of human insuli-like growth factor-1 promotes new tissue formation in an ex vivo model of articular chondrocyte transplantation. Gene Ther. 2001; 8(19):1443-9. 30. Madry H, Kaul G, Cucchiarini M, Stein U, Zurakowski D, Remberger K, et al. Enhanced repair of articular cartilage defects in vivo by transplanted chondrocytes overexpressing insulin-like growth factor 1 (IGF-1). Gene Ther. 2005; 12(15):1171-9. 31. Saxer RA, Bent SJ, Brower-Toland BD, Mi Z, Robbins PD, Evans CH, et al. Gene mediated insulin-like growth factor-1 delivery to the synovium. J Orthop Res. 2001; 19(5):759-67. 32. Madry H, Cucchiarini M. Advances and challenges in gene-based approaches for osteoarthritis. J Gene Med. 2013; 15(10):343-55. 33. Hellgren I, Drvota V, Rieper R, Enoksson S, Blomberg P, Islam KB, et al. Highly efficient cell-mediated gene transfer using non-viral vectors and FuGene6: in vitro and in vivo studies. Cell Mol Life Sci. 2000; 57(8- 9):1326-33. 34. Goodrich LR, Hidaka C, Robbins PD, Evans CH, Nixon AJ. Genetic modification of chondrocytes with insulin-like growth factor-1 enhances cartilage healing in an equine model. J Bone Joint Surg Br. 2007; 89(5):672-85. 35. Brower-Toland BD, Saxer RA, Goodrich LR, Mi Z, Robbins PD, Evans CH, et al. Direct adenovirusmediated insulin-like growth factor 1 gene transfer enhances transplant chondrocyte function. Hum Gene Ther. 2001; 12(2):117-29. 36. Brigham, standard of care: autologous chondrocyte implantation (ACI). Massachusetts, US: Brigham & Women’s Hospital; 2007. P. 1-8. 37. Kalus W, Zweckstetter M, Renner Y, Sanchez Y, Georgescu J, Grol M, et al. Structure of the IGF-binding domain of the insulin-like growth factor-binding protein-5 (IGFBP-5): implications for IGF and IGFreceptor interactions. EMBO J. 1998; 17(22):6558-72. 38. Jones JI, Gockerman A, Busby WH, Camacho-Hubner C, Clemmons DR. Extracellular matrix contains insulinlike growth factor binding protein-5: potentiation of the effects of IGF-1. J Cell Biol. 1993; 121(3):679-87. 39. Ducheyne P, Mauck RL, Smith DH. Biomaterials on the repair of sports injuries. Nat Mater. 2012; 11(8):652-4. 40. Chen P, Mei S, Xia C, Zhu R, Pang Y, Wang J, et al. The amelioration of cartilage degeneration by photo-crosslinked GelHA hydrogel and crizotinib encapsulated chitosan microspheres. Oncotarget. 2017; 8(18):30235-51. 41. Shi Q, Rondon-Cavanzo EP, Dalla Picola IP, Tiera MJ, Zhang X, Dai K, et al. In vivo therapeutic efficacy of TNFα silencing by folate-PEG-chitosan-DEAE/siRNA nanoparticles in arthritic mice. Int J Nanomedicine. 2018; 13(12):387-402. 42. Shafiee A, Kabiri M, Langroudi L, Soleimani M, Ai J. Evaluation and comparison of the in vitro characteristics and chondrogenic capacity of four adult stem/progenitor cells for cartilage cell-based repair. J Biomed Mater Res A. 2016; 104(3):600-10. 43. Wang Y, Bian YZ, Wu Q, Chen GQ. Evaluation of three-dimensional scaffolds prepared from poly(3- hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials. 2008; 29(19):2858-68. 44. Chen J, Wang F, Zhang Y, Jin X, Zhang L, Feng Y, et al. In vivo MRI tracking of polyethylenimine-wrapped superparamagnetic iron oxide nanoparticle-labeled BMSCs for cartilage repair: a minipig model. Cartilage. 2013; 4(1):75-82. 45. Dey P, Schneider T, Chiappisi L, Gradzielski M, Schulze-Tanzil G, Haag R. Mimicking of chondrocyte microenvironment using in situ forming dendritic polyglycerol sulfate-based synthetic polyanionic hydrogels. Macromol Biosci. 2016; 16(4):580-90. 46. Guo T, Zhao J, Chang Z, Ding Z, Hong H, Chen J, et al. Porous chitosan-gelatin scaffold containing plasmid DNA encoding transforming growth factor-771 for chondrocytes proliferation. Biomaterials. 2006; 27(7):1095-103. 47. Zhao X, Yu SB, Wu FL, Mao ZB, Yu CL. Transfection of primary chondrocytes using chitosan-pEGFP nanoparticles. J Control Release. 2006; 112(2):223-8. 48. Thanou M, Florea BI, Geldof M, Junginger HE, Borchard G. Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines. Biomaterials. 2002; 23(1)153-9. 49. Richardson SM, Curran JM, Chen R, Vaughan-Thomas A, Hunt JA, Freemont AJ, et al. The differentiation of bone marrow mesenchymal stem cells into chondrocyte-like cells on ply-l-lactic acid (PLLA) scaffolds. Biomaterials. 2006; 27(22):4069-78. 50. Yao Y, He Y, Guan Q, Wu Q. A tetracycline expression system in combination with Sox9 for cartilage tissue engineering. Biomaterials. 2014; 35(6):1898-906. 51. Liu C, Zhang P, Zhai X, Tian F, Li W, Yang J, et al. Nanocarrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials. 2012; 33(13):3604-13. 52. Chen XA, Zhang LJ, He ZJ, Wang WW, Xu B, Zhong Q, et al. Plasmid-encapsulated polyethylene glycol-grafted polythylenimine nanoparticles for gene delivery into rat mesenchymal stem cells. In J Nanomed. 2011; 6(1):843-53. 53. Madry H, Cucchiarini M, Stein U, Remberger K, Menger MD, Kohn D, et al. Sustained transgene expression in cartilage defects in vivo after transplantation of articular chondrocytes modified by lipid-mediated gene transfer in a gel suspension delivery system. J Gene Med. 2003; 5(6):502-9. 54. Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials.Biomaterials. 1999; 20(1):45-53. 55. Hern DL, Hubbell JA. Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J Biomed Mater Res. 1998; 39(2):266-76. 56. Marcum JA, Rosenberg RD. Anticoagulopathy active heparin-like molecules from vascular tissue. Biochemistry. 1984; 23(8):1730-7. 57. Aguilar IN, Trippel S, Shi S, Bonasar LJ. Customized biomaterials to augment chondrocyte gene therapy. Acta Biomater. 2017; 53(1):260-7. 58. Shopia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health. 2009; 1(6):461-8. 59. Buckwalter JA. Articular cartilage: Injuries and potential for healing. J Orthop Sports Phys Ther. 1998; 28(4):192-202. 60. Zvaifler NJ, Marinova-Mutafchieva L, Adams G, Edwards CJ, Moss J, Burger JA, et al. Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res. 2000; 2(6):477-88. 61. Chong PP, Selvaratnam L, Abbas M, Kamarul T. Human peripheral blood derived mesenchymal stem cells demonstrate similar characteristics and chondrogenic differentiation potential to bone marrow mesenchymal stem cells. J Orthop Res. 2012; 30(4):634-42. 62. Skowronski J, Rutka M. Osteochondral lesions of the knee reconstructed with mesenchymal stem cellsresults. Ortop Traumatol Rehabil. 2013; 15(3):195- 204. 63. Saw KY, Anz A, Merican S, Tay YG, Ragavanaidu K, Jee CS, et al. Articular cartilage regeneration with autologous peripheral blood progenitor cells and hyaluronic acid after arthroscopic subchondral drilling: a report of 5 cases with histology. Arthroscopy. 2011; 27(4):493- 506. 64. Saw KY, Anz A, Siew-Yoke Jee C, Merican S, Ching-Soong Ng R, Roohi SA, et al. Articular cartilage regeneration with autologous peripheral blood progenitor cells versus hyaluronic acid: a randomized controlled trial. Arthroscopy. 2013; 29(4):684-94. 65. Skowronski J, Skowronski R, Rutka M. Cartilage lesions of the knee treated with blood mesenchymal cells – results. Ortop Traumatol Rehabil. 2012; 14(6):569-77. 66. Frisch J, Orth P, Venkatesan JK, Rey-Rico A, Schmitt G, Kohn D, et al. Genetic modification of human peripheral blood aspirates using recombinant adenoassociated viral vectors for articular cartilage repair with a focus on chondrogenic transforming growth factor-β gene delivery. Stem Cells Transl Med. 2017; 6(1):249-60. 67. Pascher A, Palmer GD, Steinert A, Oligino T, Gouze E, Gouze JN, et al. Gene delivery to cartilage defects using coagulated bone marrow aspirate. Gene Ther. 2004; 11(2):133-41. 68. Venkatesan JK, Frisch J, Rey-Rico A, Schmitt G, Madry H, Cucchiarini M. Impact of mechanical stimulation on the chondrogenic processes in human bone marrow aspirates modified to overexpress sox9 via rAAV vectors. J Exp Orthop. 2017; 4(1):22. 69. Grol MW, Lee BH. Gene therapy for repair and regeneration of bone and cartilage. Curr Opin Pharmacol. 2018; 40(1):59-66. 70. Bellavia D, Veronesi F, Carina V, Costa V, Raimondi L, De Luca A, et al. Gene therapy for chondral and osteochondral regeneration: is the future now? Cell Mol Life Sci. 2018; 75(4):649-67. 71. Kim MK, Ha CW, In Y, Cho SD, Choi ES, Ha JK, et al. A multicenter, double-blind, phase III clinical trial to evaluate the efficacy and safety of a cell and gene therapy in knee osteoarthritis patients. Hum Gene Ther Clin Dev. 2018; 27(1):10. 72. Kim MK, Ha CW, In Y, Cho SD, Choi ES, Ha JK, et al. A multicenter, double-blind, phase III clinical trial to evaluate the efficacy and safety of a cell and gene therapy in knee osteoarthritis patients. Hum Gene Ther Clin Dev. 2018; 29(1):48-59. 73. Watson Levings R, Broome TA, Smith AD, Rice BL, Gibbs EP, Myara DA, et al. Gene therapy for osteoarthritis: pharmacokinetics of intra-articular scAAV.IL-1Ra delivery in an equine model. Hum Gene Ther Clin Dev. 2018; 29(2):90-100. 74. Rodriguez-Merchan EC. Medial unicompartmental osteoarthritis (MUO) of the knee: Unicompartmental knee replacement (UKR) or total knee replacement (TKR). Arch Bone Jt Surg. 2014; 2(3):137-40. 75. Rodriguez-Merchan EC. Unicompartmental knee osteoarthritis (UKOA): unicompartmental knee arthroplasty (UKA) or high tibial osteotomy (HTO)? Arch Bone Jt Surg. 2016; 4(4):307-13. 76. Rodriguez-Merchan EC. Does a previous high tibial osteotomy (HTO) influence the long-term function or survival of a total knee arthroplasty (TKA)? Arch Bone Jt Surg. 2018; 6(1):19-22. | ||
آمار تعداد مشاهده مقاله: 575 تعداد دریافت فایل اصل مقاله: 696 |