Histomorphometric Analysis of Newly-formed Bone Using Octacalcium Phosphate and Bone Matrix Gelatin in Rat Tibial Defects | ||
The Archives of Bone and Joint Surgery | ||
مقاله 12، دوره 7، شماره 2، خرداد و تیر 2019، صفحه 182-190 اصل مقاله (1.07 M) | ||
نوع مقاله: RESEARCH PAPER | ||
شناسه دیجیتال (DOI): 10.22038/abjs.2018.29116.1754 | ||
نویسندگان | ||
Fereydoon Sargolzaei Aval* 1؛ Mohamad R. Arab1؛ Narjes Sargolzaei2؛ Sanam Barfroushan1؛ Mohsen Mir1؛ Gholam Hossein Sargazi3؛ Forough Sargolzaei Aval4؛ Maryam Arab1 | ||
1Cellular and Molecular Research Center & Department of Anatomical Sciences, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran | ||
2Department of Community Medicine, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran | ||
3Department of Anatomical Sciences, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran | ||
4Department of Pathology, University of Washington, Seattle, Washington, USA | ||
چکیده | ||
Background: Repair of bone defects is challenging for reconstructive and orthopedic surgeons. In this study, we aimed to histomorphometrically assess new bone formation in tibial bone defects filled with octacalcium phosphate (OCP), bone matrix gelatin (BMG), and a combination of both. Methods: A total of 96 male Sprague Dawley rats aged 6-8 weeks weighing 120-150 g were randomly allocated into three experimental (OCP, BMG, and OCP/BMG) and one control group (n=24 in each group). The defects in experimental groups were filled with OCP (6 mg), BMG (6 mg), or a combination of OCP and BMG (6 mg, 2:1 ratio). No material was used to fill the defects in the control group and the defect was only covered with Surgicel. Samples were taken on days 7, 14, 21, and 56 after the surgery. The sections were stained with hematoxylin-eosin (H&E) and assessed using light microscopy. Results: In our experimental groups, bone formation was started from the margins of the defect towards the center with an increasing rate during the study period. Moreover, the formed bone was more mature. Bone formation in our control group was only limited to the margins of the defect. The newly formed bone mass was significantly higher in the experimental groups (P=0.001). Conclusion: OCP, BMG, and OCP/BMG compound enhanced osteoinduction in long bones. Level of evidence: III | ||
کلیدواژهها | ||
Bone formation؛ Bone matrix gelatin؛ Octacalcium phosphate؛ Rat؛ Tibia | ||
مراجع | ||
1. Bauer TW, Muschler GF. Bone graft materials: an overview of the basic sciences. Clin Orthop Relat Res. 2000; 371(1):10-27. 2. Finkemeier CG. Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am. 2002; 48(3):454-64. 3. Bayat M, Momen-Heravi F, Marjani M, Motahhary P. A comparison of bone reconstruction following application of bone matrix gelatin and autogenous bone grafts to alveolar defects: an animal study. J Craniomaxillofac Surg. 2010; 38(4):288-92. 4. Arvidson K, Abdallah B, Applegate LA, Baldini N, Cenni E, Gomez‐Barrena E, et al. Bone regeneration and stem cells. J Cell Mol Med. 2011; 15(4):718-46. 5. García-Gareta E, Coathup MJ, Blunn GW. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone. 2015; 81(1):112-21. 6. Amina AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012; 40(5):363-408. 7. Wang L, Detamore MS. Tissue engineering the mandibular condyle. Tissue Eng. 2007; 13(8):1955-71. 8. Raghoebar GM, Meijndert L, Kalk WW, Vissink A. Morbidity of mandibular bone harvesting: a comparative study. Int J Oral Maxillofac Implants. 2007; 22(3):356-65. 9. Ghanaati S, Barbeck M, Orth C, Willershausen I, Thimm BW, Hoffmann C, et al. Influence of β-tricalcium phosphate granule size and morphology on tissue reaction in vivo. Acta Biomater. 2010; 6(12):4476-87. 10. Gruskin E, Doll BA, Futrell FW, Schmitz JP, Hollinger JO. Demineralized bone matrix in bone repair: history and use. Adv Drug Deliv Rev. 2012; 64(12):1063-77. 11. Canter HI, Vargel I, Mavili ME. Reconstruction of mandibular defects using autografts combined with demineralized bone matrix and cancellous allograft. J Craniofac Surg. 2007; 18(1):95-100. 12. Liu X, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng. 2004; 32(3):477-86. 13. Bayat M, Momen Heravi F, Mahmoudi M, Bahrami N. Bone reconstruction following application of bone matrix gelatin to alveolar defects: a randomized clinical trial. Int J Organ Transplant Med. 2015; 6(4):176-81. 14. Murakami Y, Honda Y, Anada T, Shimauchi H, Suzuki O. Comparative study on bone regeneration by synthetic octacalcium phosphate with various granule sizes. Acta Biomater. 2010; 6(4):1542-8. 15. Suzuki O, Nakamura M, Miyasaka Y, Kagayama M, SakuraiM. Bone formation on synthetic precursors of hydroxyapatite. Tohoku J Exp Med. 1991; 164(1):37-50. 16. Kikawa T, Kashimoto O, Imaizumi H, Kokubun S, Suzuki O. Intramembranous bone tissue response to biodegradable octacalcium phosphate implant. Acta Biomater. 2009; 5(5):1756-66. 17. Kamakura S, Sasano Y, Shimizu T, Hatori K, Suzuki O, Kagayama M, et al. Implanted octacalcium phosphate is more resorbable than ß-tricalcium phosphate and hydroxyapatite. J Biomed Mater Res. 2002; 59(1):29-34. 18. Sargolzaei Avval FS, Arab H, Sarani SA, Saberi EA. Implantation of octacalcium phosphate enhances alveolar ridge in rat mandible. J Dent Sch. 2008; 25(2):167-73. 19. Sargolzaei-Aval F, Sobhani A, Arab MR, Sarani SA, Heydari MH. The efficacy of implant of octacalcium phosphate in combination with bone matrix gelatin on bone regeneration in skull defects in rat. Iran J Med Sci. 2004; 29(3):124-9. 20. Lyon T, Scheele W, Bhandari M, Oval KJ, Sanchez EG, Christensen J, et al. Efficacy and safety of recombinant human bone morphogenetic protein-2/calcium phosphate matrix for closed tibia diaphysis fracture: a double-blind, randomized, controlled phase-II/III trial. J Bone Joint Surg Am. 2013; 95(23):2088-96. 21. Lee FY, Storer S, Hazan EJ, Gebhardt MC, Mankin HJ. Repair of bone allograft fracture using bone morphogenetic protein-2. Clin Orthop Relat Res. 2002; 397(1):119-26. 22. Yan WQ, Oka M, Nakamura T. Bone bonding in bioactive glass ceramics combined with bone matrix gelatin. J Biomed Mater Res. 1998; 42(2):258-65. 23. Urist MR, Iwata H, Ceccotti PL, Dorfman RL, Boyd SD, McDowell RM, et al. Bone morphogenesis in implants of insoluble bone gelatin. Proc Natl Acade Sci. 1973; 70(12):3511-5. 24. Pan Y, Dong S, Hao Y, Chu T, Li C, Zhang Z, et al. Demineralized bone matrix gelatin as scaffold for tissue engineering. Afr J Microbiol Res. 2010; 4(9):865-70. 25. Liu Y, Ahmad S, Shu XZ, Sanders RK, Kopesec SA, Prestwich GD. Accelerated repair of cortical bone defects using a synthetic extracellular matrix to deliver human demineralized bone matrix. J Orthop Res. 2006; 24(7):1454-62. 26. Ö ztürk A, Yetkin H, Memis L, Cila E, Bolukbasi S, Gemalmaz C. Demineralized bone matrix and hydroxyapatite/tri-calcium phosphate mixture for bone healing in rats. Int Orthop. 2006; 30(3):147-52. 27. Anada T, Kumagai T, Honda Y, Masuda T, Kamijo R, Kamakura S, et al. Dose-dependent osteogenic effect of octacalcium phosphate on mouse bone marrow stromal cells. Tissue Eng Part A. 2008; 14(6):965-78. 28. Suzuki O. Octacalcium phosphate: osteoconductivity and crystal chemistry. Acta Biomater. 2010; 6(9):3379-87. 29. Kim J, Lee KW, Ahn JH, Kim JY, Lee TY, Choi B. Osteoinductivity depends on the ratio of demineralized bone matrix to acellular dermal matrix in defects in rat skulls. Tissue Eng Regen Med. 2013; 10(5):246-51. 30. Sobhani A, Sargolzaei F, Akbari M, Rafighdoust H, Abbasi M, Kashani IR. Repair of cranial bone defects using endochondral bone matrix gelatin in rat. Acta Med Iran. 2001; 39(1):24-30. 31. Legeros RZ. Preparation of octacalcium phosphate (OCP): a direct fast method. Calcif Tissue Int. 1985; 37(2):194-7. 32. Suzuki O, Nakaura M, Miyasaka Y, Kagayama M, Sakurai M. Maclurapomifera agglutinin-binding glycoconjugates on converted apatite from synthetic octacalcium phosphate implanted into subperiosteal region of mouse calvarial. Bone Miner. 1993; 20(2):151-66. 33. Suzuki O, Yagishita H, Amano T, Aoba T. Reversible structural changes of octacalcium phosphate and labile acid phosphate. J Dent Res. 1995; 74(11):1764-9. 34. Kim JH, Kim HW. Rat defect models for bone grafts and tissue engineered bone constructs. Tissue Eng Regen Med. 2013; 10(6):310-6. 35. Kamakura S, Sasano Y, Homma H, Suzuki O, Kagayama M, Motegi K. Implantation of octacalcium phosphate (OCP) in rat skull defects enhances bone repair. J Dent Res. 1999; 78(11):1682-7. 36. Parifitt AM. Bone histomorphometry: techniques and interpretation. Florida: CRC Press; 1983. 37. Mulliken JB, Glowaki J. Induced osteogenesis for repair and construction in the craniofacial regions. Plast Reconstr Surg. 1980; 65(5):535-60. 38. Suzuki O, Imaizumi H, Kamakura S, Katagiri T. Bone regeneration by synthetic octacalcium phosphate and its role in biological mineralization. Curr Med Chem. 2008; 15(3):305-13. 39. Shafieian R, Moghaddam Matin M, Rahpeyma A, Fazel A, Salari Sedigh H, Sadr Nabavi A, et al. Effects of human adipose-derived stem cells and platelet-rich plasma on healing response of canine alveolar surgical bone defects. Arch Bone Jt Surg. 2017; 5(6):406-418. 40. Holt DJ, Grainger DW. Demineralized bone matrix as a vehicle for delivering endogenous and exogenous therapeutics in bone repair. Adv Drug Deliv Rev. 2012; 64(12):1123-8. 41. Wang Z, Zhang J, Zhang Q, Gao Y, Yan J, Zhao X, et al. Evaluation of bone matrix gelatin/fibrin glue and chitosan/gelatin composite scaffolds for cartilage tissue engineering. Genet Mol Res. 2016; 15(3):1-8. | ||
آمار تعداد مشاهده مقاله: 574 تعداد دریافت فایل اصل مقاله: 339 |