Development of an 123I-metaiodobenzylguanidine Myocardial Three-Dimensional Quantification Method for the Diagnosis of Lewy Body Disease | ||
Asia Oceania Journal of Nuclear Medicine and Biology | ||
مقاله 7، دوره 6، شماره 2، مهر 2018، صفحه 129-138 اصل مقاله (1.48 M) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22038/aojnmb.2018.10595 | ||
نویسندگان | ||
Yoshito Kamiya1؛ Satoru Ota1؛ Yuta Tanaka2؛ Kosuke Yamashita3؛ Akihiro Takaki4؛ Shigeki Ito* 5 | ||
1Graduate School of Health Sciences, Kumamoto University | ||
2Graduate School of Health Sciences, Kumamoto University, | ||
3Graduate School of Health Sciences, KChuo-ku, kumamoto 862-0976, Japan | ||
4Faculty of Fukuoka Medical Technology Teikyo University, 6-22, Misaki-Machi, Omuta-shi, Fukuoka 836-8505, Japan | ||
5Department of Medical Imaging, Faculty of Life Sciences, Kumamoto University, Kuhonji 4-24-1, Kumamoto 862-0796, Japan | ||
چکیده | ||
Objective(s): We recently developed a new uptake index method for 123I-metaiodobenzylguanidine (123I-MIBG) heart uptake measurements by using planar images (radioisotope angiography and planar image) for the diagnosis of Lewy body disease (LBD), including Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). However, the diagnostic accuracy of the uptake index was approximately equal to that of the heart-to-mediastinum ratio (H/M) for the discrimination of the LBD and non-LBD patients. A simple and pain-free uptake index method using 123I-MIBG SPECT images by modifying the uptake index method may show better diagnostic accuracy than the planar uptake index method. We hypothesized that the development of a new uptake index method for the determination of 123I-MIBG using single-photon emission computed tomography (SPECT) imaging would provide a reliable and reproducible diagnostic tool for clinical application. Regarding this, the purpose of this study was to develop a new uptake index method with a simple protocol to determine 123I-MIBG uptake on SPECT. Methods: The 123I-MIBG input function was determined from the input counts of the pulmonary artery, assessed by analyzing the pulmonary artery time-activity curves. The 123I-MIBG output function was obtained from 123I-MIBG SPECT counts on the polar map. The uptake index was calculated through dividing the output function by the input function (SPECT uptake method). For the purpose of the study, 77 patients underwent 123I-MIBG SPECT, with an average of 31.5 min after clinical assessment and injection of the tracer. The H/M values, as well as planar and SPECT uptake indices were calculated, and then correlated with clinical features. Results: According to the results, values obtained for LBD were significantly lower than those for non-LBD in all analyses (P<0.01). The overlap of the H/M values between the LBD and non-LBD cases ranged from 2.06 to 2.50. Furthermore, the overlap in uptake index values between LBD and non-LBD cases in planar image analysis was 1.05-1.29. The SPECT uptake index method showed the least overlap of 1.23-1.25, with the highest value for LBD patients clearly distinguished from the lowest value for the non-LBD patients. Conclusion: The new 123I-MIBG SPECT quantification method, developed by the input counts of the pulmonary artery, clearly distinguished LBD from non-LBD. Therefore, this method may be appropriate for routine clinical study. | ||
کلیدواژهها | ||
Iodine-123 metaiodobenzylguanidine؛ Lewy body disease؛ Quantification؛ Single-photon emission tomography | ||
مراجع | ||
10. Giorgetti A, Burchielli S, Positano V, Kovalski G, Quaranta A, Genovesi D, et al. Dynamic 3D analysis of myocardial sympathetic innervation: an experimental study using 123I-MIBG and a CZT camera. J Nucl Med. 2015;56(3):464-9.
11. Mu X, Hasegawa S, Yoshioka J, Maruyama A, Maruyama K, Paul AK, et al. Clinical value of lung uptake of iodine-123 metaiodobenzylguanidine (MIBG), a myocardial sympathetic nerve imaging agent, in patients with chronic heart failure. Ann Nucl Med. 2001;15(5):411-6.
12. Ofuji A, Mimura H, Yamashita K, Takaki A, Sone T, Ito S. Development of a simple non-invasive microsphere quantification method for cerebral blood flow using I-123-IMP. Ann Nucl Med. 2016;30(3):242-9.
13. Ofuji A, Nagaoka R, Yamashita K, Takaki A, Ito S. A simple non-invasive I-123-IMP autoradiography method developed by modifying the simple non-invasive I-123-IMP microsphere method. Asia Ocean J Nucl Med Biol. 2018;6(1):50-6.
14. Yamashita K, Uchiyama Y, Ofuji A, Mimura H, Okumiya S, Takaki A, et al. Fully automatic input function determination program for simple noninvasive (123)I-IMP microsphere cerebral blood flow quantification method. Phys Med. 2016;32(9):1180-5.
15. Hoehn MM, Yahr MD. Parkinsonism: onset, progression and mortality. 1967. Neurology. 2001;57(10 Suppl 3):S11-26.
16. Okuda K, Nakajima K, Hosoya T, Ishikawa T, Konishi T, Matsubara K, et al. Semi-automated algorithm for calculating heart-to-mediastinum ratio in cardiac Iodine-123 MIBG imaging. J Nucl Cardiol. 2011;18(1):82-9.
17. Metz CE, Herman BA, Shen JH. Maximum-likelihood estimation of receiver operating (ROC) curves from continuously distributed data. Stat Med. 1998;17(9):1033-53.
18. Dorfman DD, Berbaum KS, Metz CE. ROC rating analysis: generalization to the population of readers and cases with the jackknife method. Invest Radiol. 1992;27(12):1099.
19. Masunaga S, Uchiyama Y, Ofuji A, Nagaoka R, Tomimatsu T, Iwata A, et al. Development of an automatic ROI setting program for input function determination in 99mTc-ECD non-invasive cerebral blood flow quantification. Phys Med. 2014;30(4):513-20.
20. Garcia EV, Van Train K, Maddahi J, Prigent F, Friedman J, Areeda J, et al. Quantification of rotational thallium-201 myocardial tomography. J Nucl Med. 1985;26(1):17-26.
21. El Fakhri G, Buvat I, Benali H, Todd-Pokropek A, Di Paola R. Relative impact of scatter, collimator response, attenuation, and finite spatial resolution corrections in cardiac SPECT. J Nucl Med. 2000;41(8):1400-8.
22. Patil HR, Bateman TM, McGhie AI, Burgett EV, Courter SA, Case JA, et al. Diagnostic accuracy of high-resolution attenuation-corrected Anger-camera SPECT in the detection of coronary artery disease. J Nucl Cardiol. 2014;21(1):127-34.
23. Nakajima K, Matsumoto N, Kasai T, Matsuo S, Kiso K, Okuda K. Normal values and standardization of parameters in nuclear cardiology: Japanese Society of Nuclear Medicine working group database. Ann Nucl Med. 2016;30(3):188-99. | ||
آمار تعداد مشاهده مقاله: 1,889 تعداد دریافت فایل اصل مقاله: 930 |