Current Concepts in Scaffolding for Bone Tissue Engineering | ||
The Archives of Bone and Joint Surgery | ||
مقاله 2، دوره 6، شماره 2، خرداد 2018، صفحه 90-99 اصل مقاله (571.33 K) | ||
نوع مقاله: CURRENT CONCEPTS REVIEW | ||
شناسه دیجیتال (DOI): 10.22038/abjs.2018.26340.1713 | ||
نویسندگان | ||
Toktam Ghassemi1؛ Azadeh Shahroodi2؛ Mohammad H. Ebrahimzadeh3؛ Alireza Mousavian3؛ Jebraeel Movaffagh2؛ Ali Moradi PhD* 3 | ||
1Department of Chemical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran | ||
2Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran | ||
3Orthopedic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran | ||
چکیده | ||
Bone disorders are of significant worry due to their increased prevalence in the median age. Scaffold-based bone tissue engineering holds great promise for the future of osseous defects therapies. Porous composite materials and functional coatings for metallic implants have been introduced in next generation of orthopedic medicine for tissue engineering. While osteoconductive materials such as hydroxyapatite and tricalcium phosphate ceramics as well as some biodegradable polymers are suggested, much interest has recently focused on the use of osteoinductive materials like demineralized bone matrix or bone derivatives. However, physiochemical modifications in terms of porosity, mechanical strength, cell adhesion, biocompatibility, cell proliferation, mineralization and osteogenic differentiation are required. This paper reviews studies on bone tissue engineering from the biomaterial point of view in scaffolding. | ||
کلیدواژهها | ||
Bone tissue engineering؛ Regeneration؛ Scaffolds | ||
مراجع | ||
1. Amin S, Achenbach SJ, Atkinson EJ, Khosla S, Melton LJ 3rd. Trends in Fracture incidence: a populationbased study over 20 years. J Bone Miner Res. 2014; 29(3):581-9. 2. Rho JY, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Med Eng Phys. 1998; 20(2):92-102. 3. Weiner S, Traub W. Bone structure: from angstroms to microns. FASEB J. 1992; 6(3):879-85. 4. Kokubo T, Kim HM, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials. 2003; 24(13):2161-75. 5. Brown BN, Valentin JE, Stewart-Akers AM, McCabe GP, Badylak SF. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials. 2009; 30(8):1482-91. 6. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000; 21(24):2529-43. 7. Porter JR, Ruckh TT, Popat KC. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnol Prog. 2009; 25(6):1539-60. 8. Vacanti CA. The history of tissue engineering. J Cell Mol Med. 2006; 10(3):569-76. 9. Nandi SK, Roy S, Mukherjee P, Kundu B, De DK, Basu D. Orthopaedic applications of bone graft & graft substitutes: a review. Indian J Med Res. 2010; 132(1):15-30. 10. Perry CR. Bone repair techniques, bone graft, and bone graft substitutes. Clin Orthop Relat Res. 1999; 360(10):71-86. 11. Dhandayuthapani B, Yoshida Y, Meakawa T, Kumar DS. Polymeric scaffolds in tissue engineering application: a review. Int J Polymer Sci. 2011; 2011(19):290602. 12. Stevens B, Yang Y, Mohandas A, Stucker B, Nguyen KT. A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues. J Biomed Mater Res B Appl Biomater. 2008; 85(2):573-82. 13. Alam S, Ueki K, Marukawa K, Ohara T, Hase T, Takazakura D, et al. Expression of bone morphogenetic protein 2 and fibroblast growth factor 2 during bone regeneration using different implant materials as an onlay bone graft in rabbit mandibles. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007; 103(1):16-26. 14. Fuchs JR, Nasseri BA, Vacanti JP. Tissue engineering: a 21st century solution to surgical reconstruction. Ann Thorac Surg. 2001; 72(2):577-91. 15. Meyer U, Wiesmann HP. Bone and cartilage engineering. New York: Springer Science & Business Media; 2006. 16. Ma PX. Scaffolds for tissue fabrication. Mater Today. 2004; 7(5):30-40. 17. Kretlow JD, Mikos AG. Mineralization of synthetic polymer scaffolds for bone tissue engineering. Tissue Eng. 2007; 13(5):927-38. 18. Moradi A, Dalilottojari A, Pingguan-Murphy B, Djordjevic I. Fabrication and characterization of elastomeric scaffolds comprised of a citric acid-based polyester/hydroxyapatite microcomposite. Mater Design. 2013; 50:446-50. 19. Ali Akbari Ghavimi S, Ebrahimzadeh MH, Solati‐ Hashjin M, Osman A, Azuan N. Polycaprolactone/ starch composite: Fabrication, structure, properties, and applications. J Biomed Mater Res A. 2015; 103(7):2482-98. 20. Ghavimi SA, Ebrahimzadeh MH, Shokrgozar MA, Solati-Hashjin M, Osman NA. Effect of starch content on the biodegradation of polycaprolactone/starch composite for fabricating in situ pore-forming scaffolds. Polymer Test. 2015; 43(2):94-102. 21. Ishaug SL, Yaszemski MJ, Bizios R, Mikos AG. Osteoblast function on synthetic biodegradable polymers. J Biomed Mater Res. 1994; 28(12):1445-53. 22. Athanasiou KA, Agrawal CM, Barber FA, Burkhart SS. Orthopaedic applications for PLA-PGA biodegradable polymers. Arthroscopy. 1998; 14(7):726-37. 23. Wang M. Developing bioactive composite materials for tissue replacement. Biomaterials. 2003; 24(13): 2133-51. 24. Yan J, Li J, Runge MB, Dadsetan M, Chen Q, Lu L, et al. Cross-linking characteristics and mechanical properties of an injectable biomaterial composed of polypropylene fumarate and polycaprolactone co-polymer. J Biomater Sci Polym Ed. 2011; 22(4-6):489-504. 25. Cheung HY, Lau KT, Lu TP, Hui D. A critical review on polymer-based bio-engineered materials for scaffold development. Composites B Eng. 2007; 38(3):291-300. 26. Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012; 30(10):546-54. 27. Short AR, Koralla D, Deshmukh A, Wissel B, Stocker B, Calhoun M, et al. Hydrogels that allow and facilitate bone repair, remodeling, and regeneration. J Mater Chem B. 2015; 3(40):7818-30. 28. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials science: an introduction to materials in medicine. Massachusetts: Academic Press; 2004. 29. Lee SH, Shin H. Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv Drug Deliv Rev. 2007; 59(4):339-59. 30. Moradi A. Development of bovine cartilage extracellular matrix as a potential scaffold for chondrogenic induction of human dermal fibroblasts. [Doctoral Dissertation]. Kuala Lumpur, Malaysia: University of Malaya; 2015. 31. Moradi A, Ataollahi F, Sayar K, Pramanik S, Chong PP, Khalil AA, et al. Chondrogenic potential of physically treated bovine cartilage matrix derived porous scaffolds on human dermal fibroblast cells. J Biomed Mater Res A. 2016; 104(1):245-56. 32. Pei M, Li J, Shoukry M, Zhang Y. A review of decellularized stem cell matrix: a novel cell expansion system for cartilage tissue engineering. Eur Cell Mater. 2011; 22(333):343. 33. Yang Q, Peng J, Lu SB, Guo QY, Zhao B, Zhang L, et al. Evaluation of an extracellular matrix-derived acellular biphasic scaffold/cell construct in the repair of a large articular high-load-bearing osteochondral defect in a canine model. Chin Med J. 2011; 124(23):3930-8. 34. Koob S, Torio-Padron N, Stark GB, Hannig C, Stankovic Z, Finkenzeller G. Bone formation and neovascularization mediated by mesenchymal stem cells and endothelial cells in critical-sized calvarial defects. Tissue Eng Part A. 2010; 17(3-4):311-21. 35. Cowley SP, Anderson LD. Hernias through donor sites for iliac-bone grafts. J Bone Joint Surg Am. 1983; 65(7):1023-5. 36. Kao ST, Scott DD. A review of bone substitutes. Oral Maxillofac Surg Clin North Am. 2007; 19(4):513-21. 37. Rodríguez-Fuentes N, Reynoso-Ducoing O, Rodríguez- Hernández A, Ambrosio-Hernández JR, Piña-Barba MC, Zepeda-Rodríguez A, et al. Isolation of human mesenchymal stem cells and their cultivation on the porous bone matrix. J Vis Exp. 2015; 9(96):e51999. 38. Solchaga LA, Dennis JE, Goldberg VM, Caplan AI. Hyaluronic acid‐based polymers as cell carriers for tissue‐engineered repair of bone and cartilage. J Orthop Res. 1999; 17(2):205-13. 39. Yarlagadda PK, Chandrasekharan M, Shyan JY. Recent advances and current developments in tissue scaffolding. Biomed Mater Eng. 2005; 15(3):159-77. 40. Liu X, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng. 2004; 32(3):477-86. 41. Biltz RM, Pellegrino ED. The chemical anatomy of bone: I. A comparative study of bone composition in sixteen vertebrates. J Bone Joint Surg Am. 1969; 51(3):456-66. 42. Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials. 1999; 20(23-24):2287-303. 43. Dorozhkin SV, Epple M. Biological and medical significance of calcium phosphates. Angew Chem Int Ed Engl. 2002; 41(17):3130-46. 44. Samavedi S, Whittington AR, Goldstein AS. Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomater. 2013; 9(9):8037-45. 45. Drzewiecka K, Krasowski J, Krasowski M, Łapińska B. Mechanical properties of composite material modified with amorphous calcium phosphate. J Achiev Mater Manufact Eng. 2016; 74(1):22-8. 46. Fielding GA, Bandyopadhyay A, Bose S. Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dent Mater. 2012; 28(2):113-22. 47. Cascone M, Barbani N, Cristallini C, Giusti P, Ciardelli G, Lazzeri L. Bioartificial polymeric materials based on polysaccharides. J Biomater Sci Polym Ed. 2001; 12(3):267-81. 48. Ciardelli G, Chiono V, Vozzi G, Pracella M, Ahluwalia A, Barbani N, et al. Blends of poly-(ε-caprolactone) and polysaccharides in tissue engineering applications. Biomacromolecules. 2005; 6(4):1961-76. 49. Kang HG, Kim SY, Lee YM. Novel porous gelatin scaffolds by overrun/particle leaching process for tissue engineering applications. J Biomed Mater Res B Appl Biomater. 2006; 79(2):388-97. 50. Roether J, Boccaccini AR, Hench L, Maquet V, Gautier S, Jérôme R. Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass® for tissue engineering applications. Biomaterials. 2002; 23(18):3871-8. 51. Woo BH, Kostanski JW, Gebrekidan S, Dani BA, Thanoo B, DeLuca PP. Preparation, characterization and in vivo evaluation of 120-day poly (D, L-lactide) leuprolide microspheres. J Control Release. 2001; 75(3):307-15. 52. Du C, Cui F, Zhu X, de Groot K. Three‐dimensional nano‐HAp/collagen matrix loading with osteogenic cells in organ culture. J Biomed Mater Res. 1999; 44(4):407-15. 53. 48. Bigi A, Boanini E, Panzavolta S, Roveri N, Rubini K. Bonelike apatite growth on hydroxyapatite–gelatin sponges from simulated body fluid. J Biomed Mater Res. 2002; 59(4):709-15. 54. Zhang Y, Zhang M. Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering. J Biomed Mater Res. 2001; 55(3):304-12. 55. Banerjee SS, Tarafder S, Davies NM, Bandyopadhyay A, Bose S. Understanding the influence of MgO and SrO binary doping on the mechanical and biological properties of β-TCP ceramics. Acta Biomater. 2010; 6(10):4167-74. 56. Li F, Feng QL, Cui FZ, Li HD, Schubert H. A simple biomimetic method for calcium phosphate coating. Surf Coat Technol. 2002; 154(1):88-93. 57. Farack J, Wolf-Brandstetter C, Glorius S, Nies B, Standke G, Quadbeck P, et al. The effect of perfusion culture on proliferation and differentiation of human mesenchymal stem cells on biocorrodible bone replacement material. Mater Sci Engin. 2011; 176(20):1767-72. 58. Hermawan H, Dubé D, Mantovani D. Degradable metallic biomaterials: design and development of Fe-Mn alloys for stents. J Biomed Mater Res A. 2010; 93(1):1-11. 59. Quadbeck P, Hauser R, Kümmel K, Standke G, Stephani G, Nies B, et al. Iron based cellular metals for degradable synthetic bone replacement. PM2010 World Congress, Florenz, Italy; 2010. 60. Yusop A, Bakir A, Shaharom NA, Abdul Kadir M, Hermawan H. Porous biodegradable metals for hard tissue scaffolds: a review. Int J Biomater. 2012; 2012(1):641430. 61. Bobyn J, Stackpool GJ, Hacking SA, Tanzer M, Krygier JJ. Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J Bone Joint Surg Br. 1999; 81(5):907-14. 62. Bobyn JD, Toh KK, Hacking SA, Tanzer M, Krygier JJ. Tissue response to porous tantalum acetabular cups: a canine model. J Arthroplasty. 1999; 14(3):347-54. 63. Adams JE, Zobitz ME, Reach JS Jr, An KN, Lewallen DG, Steinmann SP. Canine carpal joint fusion: a model for four-corner arthrodesis using a porous tantalum implant. J Hand Surg Am. 2005; 30(6):1128-35. 64. Meneghini RM, Lewallen DG, Hanssen AD. Use of porous tantalum metaphyseal cones for severe tibial bone loss during revision total knee replacement: surgical technique. J Bone Joint Surg Am. 2009; 91(Suppl 2 Pt 1):131-8. 65. Vehof JW, Spauwen PH, Jansen JA. Bone formation in calcium-phosphate-coated titanium mesh. Biomaterials. 2000; 21(19):2003-9. 66. Wu C, Zhou Y, Fan W, Han P, Chang J, Yuen J, et al. Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. Biomaterials. 2012; 33(7):2076-85. 67. Hermawan H, Alamdari H, Mantovani D, Dube D. Iron-manganese: new class of metallic degradable biomaterials prepared by powder metallurgy. Powder Metallurgy. 2008; 51(1):38-45. 68. Di Mario C, Griffiths H, Goktekin O, Peeters N, Verbist J, Bosiers M, et al. Drug‐eluting bioabsorbable magnesium stent. J Interv Cardiol. 2004; 17(6):391-5. 69. Li Z, Gu X, Lou S, Zheng Y. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials. 2008; 29(10):1329-44. 70. Peuster M, Wohlsein P, Brügmann M, Ehlerding M, Seidler K, Fink C, et al. A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal-results 6-18 months after implantation into New Zealand white rabbits. Heart. 2001; 86(5):563-9. 71. Song G. Control of biodegradation of biocompatable magnesium alloys. Corrosion Sci. 2007; 49(4):1696- 701. 72. Witte F, Kaese V, Haferkamp H, Switzer E, Meyer- Lindenberg A, Wirth CJ, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials. 2005; 26(17):3557-63. 73. Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006; 27(9):1728-34. 74. Heublein B, Rohde R, Kaese V, Niemeyer M, Hartung W, Haverich A. Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart. 2003; 89(6):651-6. 75. Gu XN, Zhou WR, Zheng YF, Liu Y, Li YX. Degradation and cytotoxicity of lotus-type porous pure magnesium as potential tissue engineering scaffold material. Mater Lett. 2010; 64(17):1871-4. 76. Gu XN, Zheng YF. A review on magnesium alloys as biodegradable materials. Front Mater Sci China. 2010; 4(2):111-5. 77. Stroganov GB, Savitsky EM, Tikhova NM, Terekhova VF, Volkov MV, Sivash KM, et al. Magnesium-base alloy for use in bone surgery. Washington, DC: Patent and Trademark Office; 1972. 78. Witte F, Fischer J, Nellesen J, Crostack HA, Kaese V, Pisch A, et al. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials. 2006; 27(7):1013-8. 79. Saris NE, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A. Magnesium: an update on physiological, clinical and analytical aspects. Clin Chim Acta. 2000; 294(1-2):1-26. 80. Witte F, Ulrich H, Palm C, Willbold E. Biodegradable magnesium scaffolds: Part II: peri‐implant bone remodeling. J Biomed Mater Res. 2007; 81(3):757-65. 81. Balla VK, Bodhak S, Bose S, Bandyopadhyay A. Porous tantalum structures for bone implants: fabrication, mechanical and in vitro biological properties. Acta Biomater. 2010; 6(8):3349-59. 82. Das K, Balla VK, Bandyopadhyay A, Bose S. Surface modification of laser-processed porous titanium for load-bearing implants. Scripta Mater. 2008; 59(8):822-5. 83. Goodman SB, Ma T, Chiu R, Ramachandran R, Smith RL. Effects of orthopaedic wear particles on osteoprogenitor cells. Biomaterials. 2006; 27(36):6096-101. 84. Okazaki Y. A new Ti-15Zr-4Nb-4Ta alloy for medical applications. Curr Opin Solid State Mater Sci. 2001; 5(1):45-53. 85. Zdeblick TA, Phillips FM. Interbody cage devices. Spine. 2003; 28(15 Suppl):S2-7. 86. Jansen JA, Vehof JW, Ruhe PQ, Kroeze-Deutman H, Kuboki Y, Takita H, et al. Growth factor-loaded scaffolds for bone engineering. J Control Release. 2005; 101(1-3):127-36. 87. Crowninshield RD. Mechanical properties of porous metal total hip prostheses. Instr Course Lect. 1985; 35(1):144-8. 88. Faria PE, Carvalho AL, Felipucci DN, Wen C, Sennerby L, Salata LA. Bone formation following implantation of titanium sponge rods into humeral osteotomies in dogs: a histological and histometrical study. Clin Implant Dent Relat Res. 2010; 12(1):72-9. 89. van den Dolder J, Jansen JA. Titanium fiber mesh: a nondegradable scaffold material. London: Engineering of Functional Skeletal Tissues; 2007. P. 69-80. 90. Prymak O, Bogdanski D, Köller M, Esenwein SA, Muhr G, Beckmann F, et al. Morphological characterization and in vitro biocompatibility of a porous nickeltitanium alloy. Biomaterials. 2005; 26(29):5801-7. 91. Greiner C, Oppenheimer SM, Dunand DC. High strength, low stiffness, porous NiTi with superelastic properties. Acta Biomater. 2005; 1(6):705-16. 92. Tarniţă D, Tarniţă DN, Bîzdoacă N, Mîndrilă I, Vasilescu M. Properties and medical applications of shape memory alloys. Rom J Morphol Embryol. 2009; 50(1):15-21. 93. Assad M, Chernyshov A, Leroux MA, Rivard CH. A new porous titanium-nickel alloy: part 1. Cytotoxicity and genotoxicity evaluation. Biomed Mater Engin. 2002; 12(3):225-37. | ||
آمار تعداد مشاهده مقاله: 1,727 تعداد دریافت فایل اصل مقاله: 1,611 |